EECE416 Microcomputer Fundamentals

68000 Processor

- **1. Chip Signal Description**
- **2. Instruction and Programming**

Dr. Charles Kim

Howard University

WWW.MWFTR.COM

1

68000 Microprocessor

₩64 pins ∺32- bit Data and Address Registers #16- bit Data Bus \approx 24- bit Address Bus (16MB) ∺14 Addressing Modes Hemory- Mapped Input/ Output **H**Program Counter(PC) ₩5 Main Data Types- *L*, *W*, *B*, *b*, *BCD* ∺7 interrupt levels ∺Clock speeds: 4MHz to 12.5MHz

Synchronous and asynchronous data transfers

Core Structure

Internal Structure - Registers

MICROPROCESSOR

Connecting with Peripherals

		3

68000 Single Board Computer (SBC)

68000 Single Board Computer- block diagram

SIGNAL DESCIRPTION

3. ASYNCHRONOUS BUS CONTROL

Address Strobe (~AS).

☑ This three-state signal indicates that the information on the address bus is a valid address.

► Read/Write (R/~W).

☑This three-state signal defines the data bus transfer as a read or write cycle.

- Upper And Lower Data Strobes (~UDS, ~LDS).
- Data Transfer Acknowledge (~DTACK).
 - ☑ This input signal indicates the completion of the data transfer.

Memory Decoding

Hemory Bus △Data (Bi-directional) Address (Unidirectional) **H**Address Bus Buffering Fan Out 74LS244 Octal line driver/receiver H Data Bus Buffering R/W for Direction ✓ Fan Out △74LS245 Octal Bus Transceiver

Memory Accessing

#READ AND WRITE CYCLE

Memory Address Decoding

How Much Memory?How Many Address Lines?

- $32K \rightarrow 15$ lines

Memory Decoding

₩Q: 64K Word (or 128 KB) of RAM, with it's starting address at \$480000

- \Re A: 128KB \rightarrow 17 lines
 - Range: \$480000 \$49FFFF
 - \square UDS and LDS for A₀ line.

Memory Decoding Example

₩Q: 16K Word EEPROM with starting address at \$300000.
 ℋA: 32KB → 15lines
 №\$300000 - \$307FFF

Memory Decoding - multibank

₩Q: 256KB RAM composed of eight 32KB RAMs **H**Address Range: A₁₅ ○ 00000 – 07FFF A₁₆ ○ 08000 – 0FFFF A₁₇ 10000 – 17FFF 18000 – 1FFFF A₂₃ 20000 – 27FFF A₂₂ A₂₁ ─28000 – 2FFFF A_{20} ☐ 30000 – 37FFF A₁₉ A_{18} △ 38000 – 3FFFF AS

SIMM (*single in-line memory module*) Circuit of RAM

#4MB Memory at the base address of 800000 using 1MB SIMMs

ιU

Memory Map for ROM and RAM

19

Memory Decoding with Byte/Word Access

Can You Draw a Memory Map of this?

How about Intel 80386 case?

Data Organization in Memory

						BYI	Ē =	8 Bl	TS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	-	0	
MSB			BY	TE O			LSB				BYT	ſE 1				
			BY	TE 2							BYT	FE 3				

WORD =16 BITS

15	- 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MSB	MSB WORD 0 LSB														
							WO	RD 1							
							WO	RD 2							
		EVE	N BYTE	Ē				1			ODI) BYTE	1		
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

Data/Address Organization in Memory

LONG WORD = 32 BITS

15	14	13	12	11	10	9	8	7	6	5	- 4	3	2	1	0
MSB		LONG	WODD				HIGH	ORDE	R						
		LONG	WORD				LOW	ORDEF	2						LSB
		LONG	WORD	1 -											
		LONG	WORD	2 -											

ADDRESS = LONG WORD = 32 BITS

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MSB		ADD	DESSA	_			HIGH	ORDE	R						
		ADD	RE33 U				LO₩	ORDE	R						LSB
		ADD	RESS 1	-											
		ADD	RESS 2	_											

Big-Endian

- Hords are stored with the lower 8- bits in the higher of the two storage locations
- # As opposed to little- endian (lower-order byte stored in the lowest addr) processors, like the Intel 80x86 family

Memory address		
\$000000	Byte0	Byte1
\$000002	Byte2	Byte3
\$000004	Byte4	Byte5
\$000000	Longwor	d 0 (MSW)
\$000002	Longwor	d 0 (LSW)
\$000004	Longwor	d 1 (MSW)
\$000006	Longwor	d 1 (LSW)

MOVE	\$3210,	0
------	---------	---

MOVE \$76543210, 0

\$000000	32	10
\$000000	76	54
\$000002	32	10

Common file Formats & Endian Order Adobe Photoshop: B'g 13mp: little GIF: Little JPEG: Big MacPaint: Biz PC printprush(pcx): little - William T. Verts Apr 1996 (S. UMASS. CAU

#4. BUS ARBITRATION CONTROL

△Bus Request (~BR)

H

```
Bus Grant (~BG)
```

Ħ

Bus Grant Acknowledge (~BGACK)

% 5. INTERRUPT CONTROL (IPL0,IPL1,IPL2)

- These input signals indicate the encoded priority level of the device requesting an interrupt.
- Level seven, which cannot be masked, has the highest priority; level zero indicates that no interrupts are requested.
- IPL0 is the least significant bit of the encoded level, and IPL2 is the most significant bit.

6. SYSTEM CONTROL

- 🔼 Bus Error (~BERR)
- 🗠 Reset (~RESET)

The processor assertion of ~RESET (from executing a ~RESET instruction) resets all external devices of a system without affecting the internal state of the processor.

🔼 Halt (~HALT)

An input to this bidirectional signal causes the processor to stop bus activity at the completion of the current bus cycle.

7. M6800 PERIPHERAL CONTROL

- Enable (E)
- ✓Valid Peripheral Address (~VPA)
- ✓Valid Memory Address (~VMA)

8. PROCESSOR FUNCTION CODES (FC0, FC1, FC2)

∺9. CLOCK (CLK): 8MHz

%10. POWER SUPPLY (V_{cc} and GND)

Functi	on Code (Dutput	
FC2	FC1	FC0	Address Space Type
Low	Low	Low	(Undefined, Reserved)
Low	Low	High	User Data
Low	High	Low	User Program
Low	High	High	(Undefined, Reserved)
High	Low	Low	(Undefined, Reserved)
High	Low	High	Supervisor Data
High	High	Low	Supervisor Program
High	High	High	CPU Space