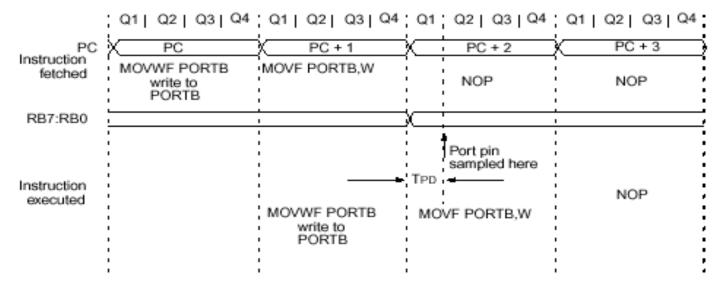
Motor Control – Part 2

Rotor

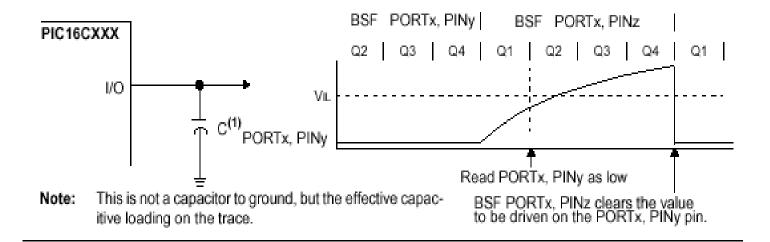
Rotor Shaft WWW.MWFTR.COM

Dr. Charles J. Kim

Department of Electrical and Computer Engineering Howard University



EECE691: Embedded Computing

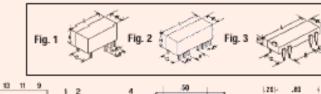

PIC Driving Capability

Maximum output curree sur 1/2 2 y 1/0 pin	. 25 mA
Maximum output	. 25 mA
Maximum arrent s by PORTA, PORTB, and PORTE (combined)	200 mA
Maxing up and sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Current sunk by PORTC and PORTD (combined)	200 mA
Maxmum current sourced by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTF and PORTG (combined)	100 mA
Maximum current sourced by PORTF and PORTG (combined)	100 mA

PIC Successive I/O Operation (Write-Read)

This example shows a write to PORTB followed by a read from PORTB.

Relays



99901CA

16

Schematic 1

9.8

Relie Schematic 2 Schematic 3

Schematic 4

13 11 9

Schematic 5

Ó

84 0

S

Schematic 7

Õ-

5

Schematic 6

Schematic 8

0

-12

0.0

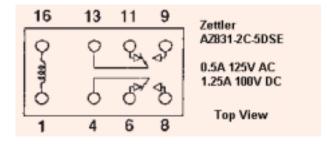
١,

20

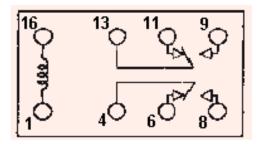
.20

	Mfr. Cross		Contact	Contact	Coil	Coil		Contact		Jameco		Size	Leads		Pric	ing	
Part No.	Reference No.	Manufacturer	Schem.	Form	Voltage	Ohms	Contact Voltage	Current	Pins	Socket	Fig.	L x W x H (in.)	A x B x C (in.)	1	10	50	100
106462CA	201A05	Excel Cell Elect.	1	SPST-N0	5VDC	500	100VDC	0.5A	8	37161	3	.78 x .25 x .20	.10 x .40 x .30	\$2.15	\$1.81	\$1.52	\$1.25
138430CA	2D1A05	Excel Cell Elect.	2	SPST-N0	5VDC	500	100VDC	0.5A	8	37161	3	.77 x .30 x .22	.10 x .40 x .30	2.29	1.95	1.65	1.34
215896CA	OJE-SS-109LMF	OEG	7	SBT-NO	9VDC	400	250VAC/30VDC	3A/3A	4	_	1	.71 x .39 x .57	.50 x .60 x .30	2.29	1.95	1.69	1.39
106471CA	201A12	Excel Cell Elect.	1	SPST-N0	12VDC	1000	100VDC	0.5A	8	37161	3	.78 x .25 x .20	.10 x .40 x .30	2.29	1.95	1.65	1.39
138448CA	2D1A1200	Excel Cell Elect.	2	SPST-N0	12VDC	1000	100VDC	0.5A	8	37161	3	.77 x .30 x .22	.10 x .40 x .30	2.25	1.95	1.75	1.49
192760CA	5MBU-5	Fujitsu	6	DPST-NO	5VDC	35	240\/AC/24\/DC	5A	8	_	1	1.13 x .50 x .98	.17 x .76 x .28	1.95	1.75	1.49	1.25
138456CA	202A05	Excel Cell Elect.	3	DPST-NO	5VDC	140	100VDC	0.5A	8	37161	3	.77 x .30 x .28	.10 x .40 x .30	3.49	3.15	2.69	2.19
173913CA	AZ831-2C-5DSE	American Zettler	4	DPDT	5VDC	125	125\/AC/100\/DC	.5A/1.25A	8	37401	1	.79 x .38 x .44	.18 x .28 x .29	2.35	2.15	1.69	1.25
139977CA	RSB5S	Shin Mei	4	DPDT	5VDC	125	120VAC/30VDC	1A/2A	8	37372	1	.79 x .39 x .37	.20 x .40 x .30	2.49	2.25	1.95	1.75
99338CA	LM12000	Clare	4	DPDT	6VDC	71	125VAC/100VDC	2A	8	37372	1	.79 x .40 x .43	.20 x .40 x .30	2.49	2.19	1.59	1.29
99311CA	DS2Y-S-DC12V*	Aromat (NAIS)	4	DPDT	12VDC	720	110VAC/30VDC	.3A/1A	8	37372	1	.79 x .40 x .43	.20 x .40 x .30	2.49	2.31	2.05	1.75
99901CA	LX200D00	Clare	4	DPDT	12VDC	720	125VAC/100VDC	2A	8	37372	1	.79 x .40 x .30	.20 x .40 x .30	6.95	6.25	5.63	4.49
99320CA	LM12E00*	NEC	4	DPDT	24VDC	1110	125VAC/100VDC	2A	8	37372	1	.79 x .40 x .43	.20 x .40 x .30	2.95	2.69	2.39	2.15
136549CA	DS4E-M-DC5V*	Aromat	5	4PDT	5VDC	62.5	125VAC/30VDC	.6A/2A	14	112299	2	1.40 x .40 x .36	.20 x .30 x .30	5.49	4.95	4.45	4.05
176313CA	DS4E-M-DC12V	Aromat	5	4PDT	12VDC	360	125\/AC/30\/DC	.6A/2A	14	112299	2	1.40 x .40 x .36	.20 x .30 x .30	6.95	6.29	5.29	4.39
206543CA	DS4E-S-DC5V-1C-N137	Aromat	6	4PDT	5VDC	125	250\/AC/220VDC	2A	14	112299	2	1.40 x .40 x .42	.20 x .30 x .30	8.45	7.77	7.10	6.82
215909CA	RKA-7D2-12	P & B	8	DPST-NO	12VDC	270	250VAC/24VDC	5A/5A	6	_	1	1.13 x .49 x .97	.20 x .80 x .30	2.29	1.95	1.69	1.39

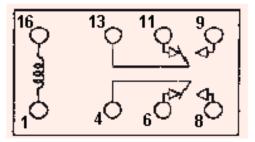
DC Motor Control by Relay

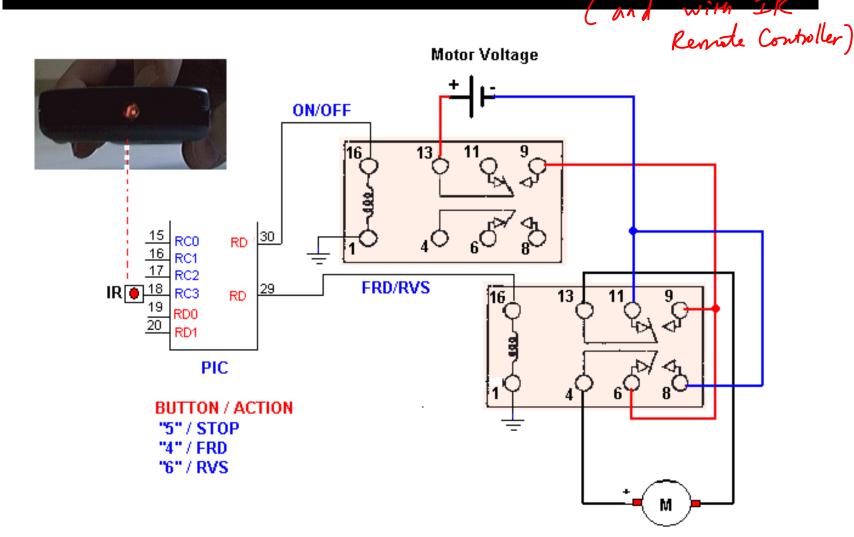


SUBMINIATURE


FEATURES

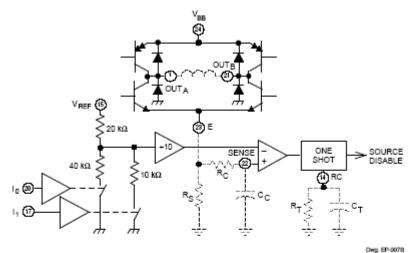
- · Low profile for compact board spacing
- DC coils to 48 VDC
- · Single button crossbar contacts
- High sensitivity, 100 mW pickup
- Life expectancy to 15 million operations





DIRECTION Control

DC Motor Control by Relay

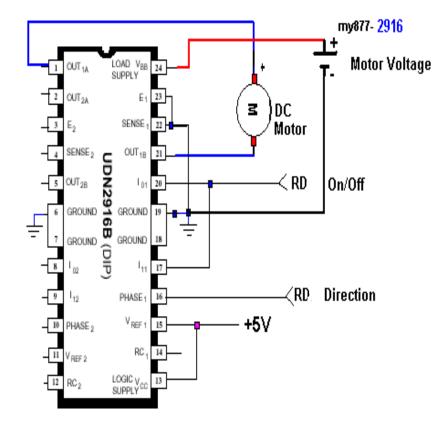


Motor Control using a Relay with IR

;RD6: FC ;RD1 : LE ;RD0: LE ;RC3: IR	N/OFF control DRWARD/REVS D for Forward D for Reverse receiver N DECODE VA	l action action i	indicator	PORTD 76543210	next	andlw btfss goto goto movf andlw btfss	B'1111100' STATUS, ZERO next FORWARD COMreg,0 B'11111011' STATUS, ZERO	;W=3? then FORWARD ;W=4? then HOLDON
; 5 ; 4 ; 6 ; ; START		1) 1) NSC	Stop FORWARD REVERSE	00000000 0010 0001	next1 next2	goto goto movf andlw btfss goto goto goto	next1 HOLDON COMreg, 0 B'11111010' STATUS, ZERO next2 REVERSE AGAIN	;W=5? then REVERSE
AGAIN	movwf TR banksel TR crif TR banksel PC call SC clrf ST	20 RISC RISD RTD DRTD DNYIR FATUS DMreg,0	;all output ; STOP condition		;action ro FORWAR	RD banksel movlw movwf call call banksel movlw movwf	PORTD B'00000010' PORTD delay1s delay1s PORTD B'11000010'' PORTD	;stop for direction change
						goto	AGAIN	

DC Motor Control by Allegro 2916

PWM CURRENT-CONTROL CIRCUITRY



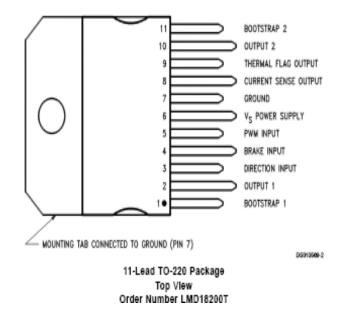
TRUTH TABLE

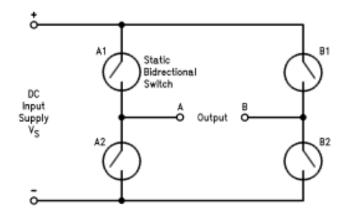
PHASE	OUTA	OUTB
н	н	L
L	L	н

CURRENT-CONTROL TRUTH TABLE

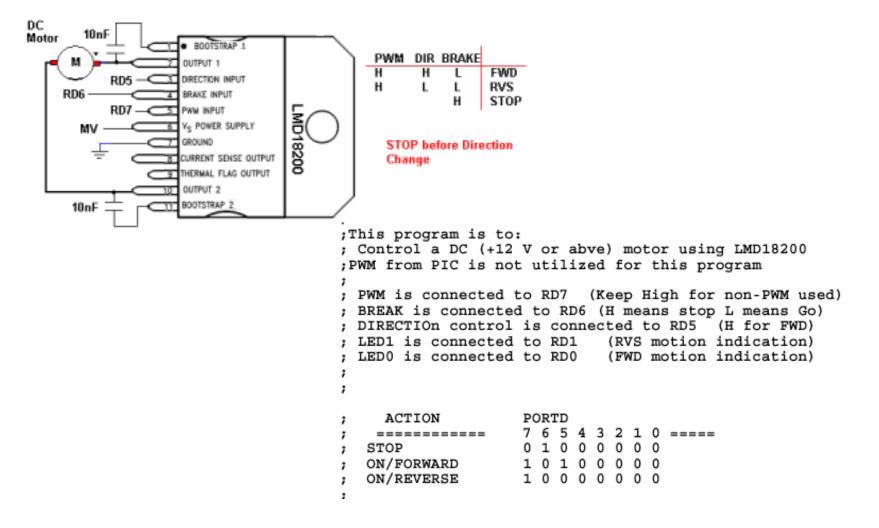
I ₀	կ	Output Current
L	L	V _{REF} /10 R _s = I _{TRIP}
н	L	$V_{REF}/15 R_{S} = 2/3 I_{TRIP}$
L	н	V _{REF} /30 R _S = 1/3 I _{TRIP}
н	Н	0

DC Motor Control with UDN2916B: Coding


;This program is to: :1. Read Sony Remote Controller :2. Respond the command of a DC motor to '5': Stop (IR code: 04) '4': Forward (IR code: 03) 3 (IR code: 05) '6': Reverse :3. Motor Control Chip is ALLEGRO UDN2916B (for Bipolar Stepper & DC control) ; ON/OFF control is connected to RD7 (Active Low logic) : DIRECTIOn control is connected to RD6 ; LED1 is connected to RD1 (RVS motion indication) ; LED0 is connected to RD0 (FWD motion indication) SONY IR REading PORTD ACTION 76543210 ===== STOP 041XXXXX00 (10000000) 03 ON/FORWARD 01XXXX10 (01000010): 05 0 0 X X X X 0 1 ON/REVERSE (00000001):IR-RX pin(IRX) is dedicated to RC3 port

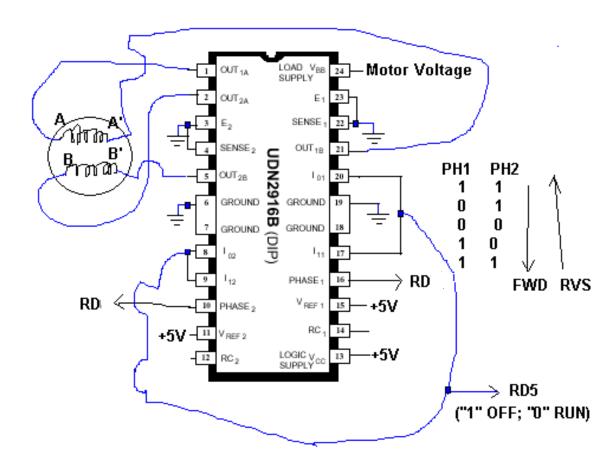

DC Control by H-Bridge Driver LMD18200

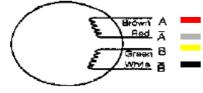
National Semiconductor


LMD18200 3A, 55V H-Bridge

Γ	PWM	Dir	Brake	Active Output Drivers
Γ	Н	н	L	A1, B2
	н	L	L	A2, B1
	L	х	L	A1, B1
	н	н	н	A1, B1
	н	L	н	A2, B2
	L	Х	н	NONE

LMD18200 – connection and coding (no PWM involved)




LMD18200 Coding - continued

banksel movlw movwf banksel movlw movwf AGAIN ; action routi FORWARD	TRISD H'00' TRISD PORTD B'01000000' PORTD	;All ports ar ;STOP Conditi	REVERSE banksel movlw movwf call banksel movlw movwf call	PORTD B'10000001' PORTD delay10s PORTD B'01000001' PORTD delay1s	
banksel movlw movwf call banksel movlw movwf call	PORTD B'10100010' PORTD delay10s PORTD B'01100000' PORTD delay1s	;STOP	HOLDON banksel movlw movwf call call call call goto	PORTD B'01000000' PORTD delay1s delay1s delay1s AGAIN	;at

t

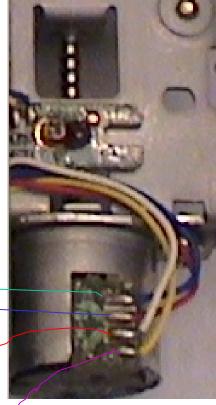
Bipolar Stepper Control using UDN2916B

Step	A	В	Ā	B
1	+	+	-	-
2	· • ·	+	i +	-
3	•	*	+ 1	ŧ
4	+	-	-	+
5	+	+	,	- 1

Note on a Symbol Motor

Symbol Technologies 21-02485 Bipolar Motor

WIRING DIAGRAM


*NOTE: If the motor comes with WHITE and BLACK wires tied together, cut the White wire from the connector. WHITE is not used in Bipolar mode.

Floppy Disk Driver Head Motor

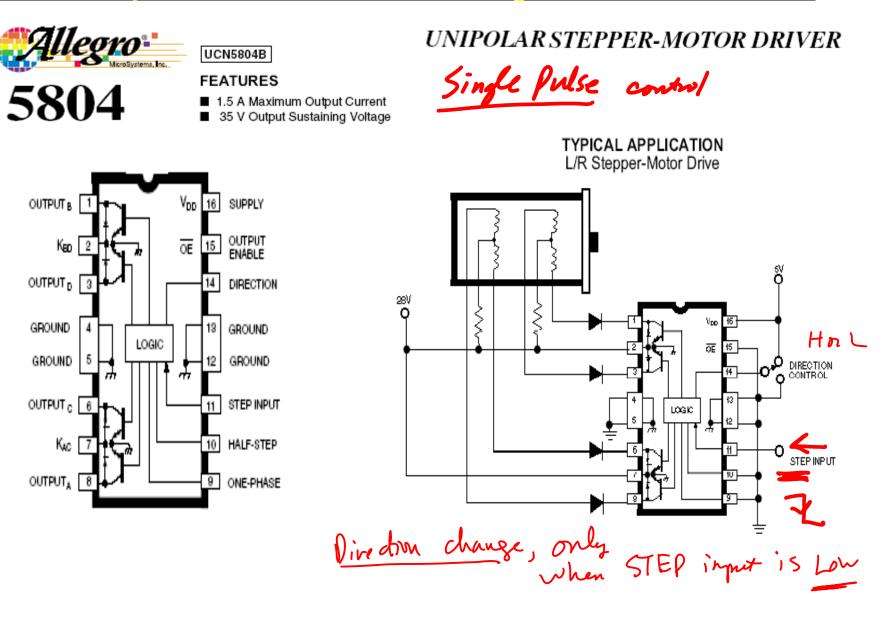
$$\begin{array}{c|c}
A & B \\
\hline \overline{A} & 4 \\
\hline \overline{A} & \overline{B}
\end{array}$$

Forward/Reverse Sequennce

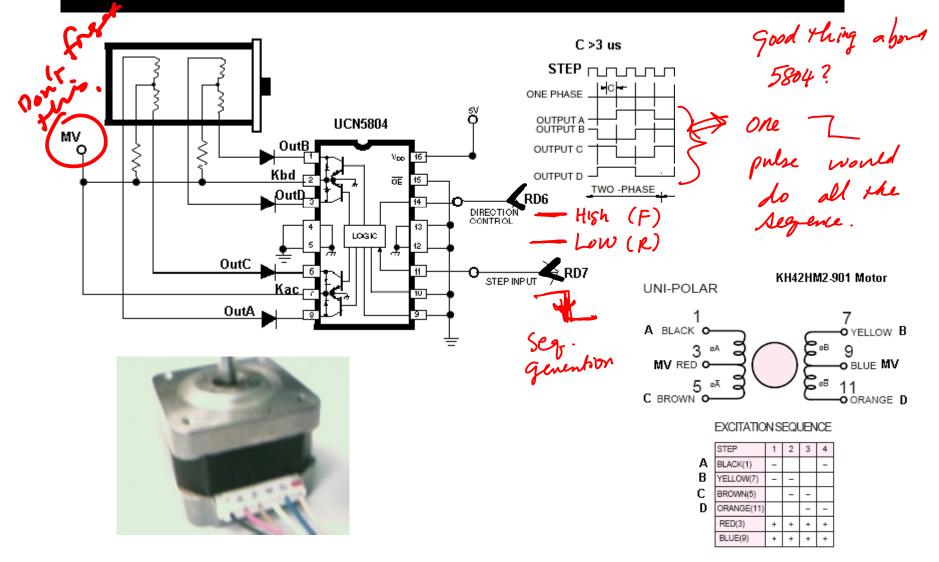
```
;To generate forward sequence of 4 pulses
; to move the rotor forward 4 steps
fSequence
   banksel PORTD
   bcf PORTD, 0x05
                      ;100% power START
           delay100ms
   call
   movlw B'11000010'
   movwf PORTD
   call delay100ms
   banksel PORTD
   movlw B'01000010'
   movwf PORTD
   call
           delay100ms
   banksel PORTD
   movlw B'00000010'
   movwf PORTD
   call
           delay100ms
   banksel PORTD
   movlw
           B'10000010'
   movwf PORTD
   call delay100ms
   movlw B'11000000'
   movwf
           PORTD
   return
```

```
;To generate forward sequence of 4 pulses
; to move the rotor backward 4 steps
rSequence
   banksel PORTD
   bcf PORTD, 0x05
   call
           delay100ms
   movlw B'11000001'
   movwf PORTD
   call delay100ms
   banksel PORTD
   movlw B'10000001'
   movwf PORTD
   call
           delay100ms
   banksel PORTD
   movlw B'00000001'
   movwf PORTD
   call
           delay100ms
   banksel PORTD
   movlw B'01000001'
   movwf PORTD
           delay100ms
   call
   movlw B'11000000'
   movwf PORTD
   return
```

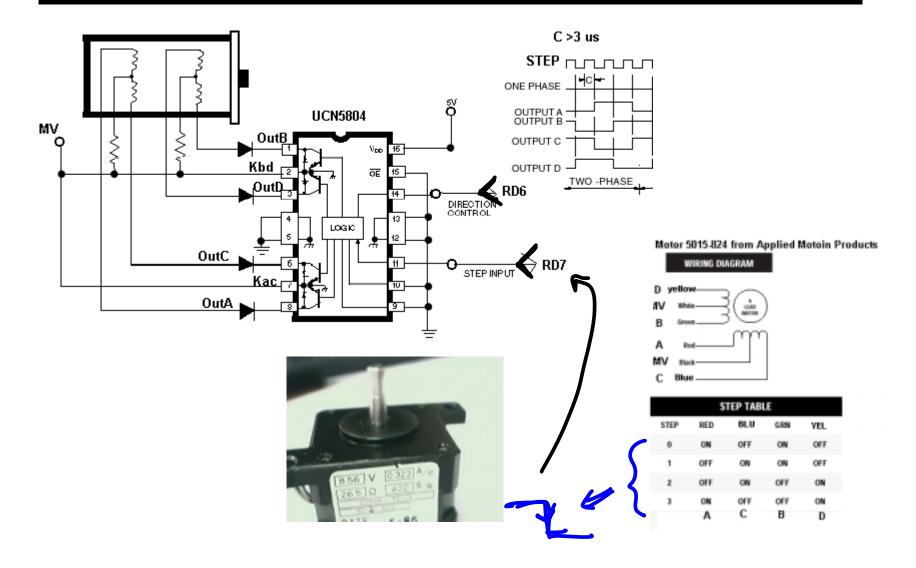
Bipolar Stepper Motor Coding – with SONY IR


```
;This program is to:
;1. Read Sony Remote Controller
2. Respond the command of a Bipolar Stepper motor to
                         (IR code:04)
     '5': STOP
     '4': Forward
                         (IR code: 03)
    '6': Reverse
                         (IR code: 05)
;3. Motor Control Chip is ALLEGRO UDN2916B (for Bipolar Stepper &
DC control)
; Phase 1 control (for A and A- coil) is connected to RD7
; Phase 2 control (for B and B- coil) is connected to RD6
; PWM control lines (I01, I02, I11, and I12) are tied to RD5
 LED1 is connected to RD1 (RVS motion indication)
; LED0 is connected to RD0 (FWD motion indication)
  SONY IR REading
                   ACTION
                                  PORTD
                                        76543210 =====
   _____
                       ______
                   STOP
   04
                                       (00100000)
                                       See below
  03
                   ON/FORWARD STEPS
                   ON/REVERSE STEPS
  05
                                       See below
                                                 STEP FORWARD
; IR-RX pin(IRX) is dedicated to RC3 port
                                                А
                                                   в
                                                           76543210 (PORTD)
                                                         ->1 1 0 0 0 0 1 0
                                                          >01000010
                                                          >0 0 0 0 0 0 1 0
                                                         ->10000010
        INN RC3
                                              1 STEP REVERSE
                                                                       1 0 (PORTD)
        200
                                                       --->1 1
                                                               0
                                                                 0 0 0 0 1
                                                               0
                                                                 0
```

;blah bla			
,		PORTD	
	movlw	B'11100000'	
	movwf	PORTD	;STOP
AGAIN			
	call SONYI		
;blah bla	call IRdeo	coding	
FORWARDST			
	banksel	PORTD	
	bof PORTI		
	banksel	first	
	movlw	H'05'	
E	movwf	first	
fagain	call	fSTEP	
	decfsz	first	
	goto banksel	fagain	
	movlw	PORTD B'11100000'	
	movwf	PORTD	
	goto	AGAIN	
	goto	AGAIN	
REVERSEST			
	banksel	PORTD	
	bcf PORT	,	
	banksel	second	
	movlw	H'05'	
	movwf	second	
ragain	call	rSTEP	
	decfsz	second	
	goto	ragain	
	banksel	PORTD	
	movlw	B'11100000'	
	movwf	PORTD	
	goto	AGAIN	


Coding -Continued

HOLDON banksel PORTD movlw B'11100000' PORTD movwf call delay1s ;at least goto AGAIN ;blah ;=================================== fSTEP banksel PORTD movlw B'11000010' movwf PORTD call delay200ms banksel PORTD movlw B'01000010' movwf PORTD call delay200ms banksel PORTD movlw B'00000010' movwf PORTD call delay200ms banksel PORTD movlw B'10000010' movwf PORTD call delay200ms return


Unipolar Control using UCN5804

Unipolar Stepper Motor Control by UCN5804

Unipolar Stepper Motor Control by UCN5804

Coding for UCN5804

;This program is to: ;1. Control a Unipolar Stepper Motor ;2. Turn Forward then Reverse ;3. Motor Control Chip is ALLEGRO UCN5804 (for Unipol control) FORWARDSTEP PORTD banksel HIGH-To-LOW PULSE output connected to RD7 PORTD, FR ; forward bsf DIRECTION output is connected to RD6 ;forward indicator bsf PORTD, LED1 ; LED1 is connected to RD1 (RVS motion indication) bcf PORTD, LEDO LEDO is connected to RDO (FWD motion indication) /s en angel 7 pulses on steps first banksel movlw H'14 ACTION PORTD movwf first call faqain PULSE 1 STEP FORWARD: set RD6 H then H --> L of RD7 1 STEP REVERSE: set RD6 L then H --> L of RD7 decfsz first To change the direction, RD7 must be in L state goto fagain banksel PORTD movlw B'00000000'

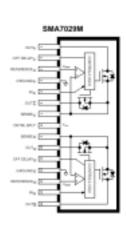
; ===== subroutine PULSE ====== PULSE banksel PORTD bsf PORTD, STEP ;RD7 call ;or 20ms Or 200ms etc delay10ms banksel PORTD bcf PORTD, STEP call delay10ms return

Assignment for Unipolar using UCN5804

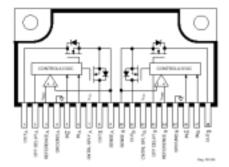
 Add SONY IR into UCN 5804 control of a Unipolar Motor

KD7

RO6


RC3

RI I RO 0


- Button 2 for Forward
- Button 8 for Reverse
- Button 5 for Stop
- Due: Monday, March 12, 2007
 - Class Check

Unipolar Stepper Control using SLA7024

HIGH-CURRENT PWM, UNIPOLAR STEPPER MOTOR CONTROLLER/DRIVERS

Part Number	Package	Output Current			
SLA7024M	18-Lead Power-Tab SIP	1.5 A			
SLA7026M	18-Lead Power-Tab SIP	3.0 A			
SMA7029M	15-Lead SIP	1.5 A			
SLA7024M and SLA7026M					

2-PHASE (FULL STEP) OPERATION for SLA7024M and SLA7026M

Sequence	0	1	2	3	0
Input A	Н	L	L	Н	Н
Input A	L	Н	Н	L	L
Input B	Н	Н	L	L	Н
Input B	L	L	Н	Н	L
Outputs ON	AB	AB	AB	AB	AB

