
Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

351

Chapter 12. Internal EEPROM Access

1. FLASH Memory and EEPROM

As discussed in Chapter 2 of the PIC 16F877 architecture, there is 8K Word of FLASH program
memory and 256 bytes of EEPROM (Electrically Erasable Programmable Read Only Memory).
EEPROM is a convenient memory which can be re-written almost indefinitely by again and
again without using any external device. Since the RAM area where your filer register and
variables are stored in your code is erased once power to the PIC board is turned on, this
EEPROM can be a valuable storage space if you application needs a permanent data storage so
that power turn-off does not affect your code. One example is storing telephone numbers into
EEPROM so that it keeps the numbers even when power is lost.

FLASH memory is where your code resides and EEPROM can be access by your code.

Fig. 84 FLASH memory and EEPROM

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

352

By the way, FLASH memory is a type of EEPROM chip. It has a grid of columns and rows with
a cell that has two transistors at each intersection. The two transistors are separated from each
other by a thin oxide layer. One of transistors is known as a floating gate and the other one is the
control gate. The floating gate's only link to the row, or wordline, is through the control gate. As
long as this link is in place, the cell has a value of "1". To change the value to a "0" requires a
curious process called Fowler-Nordheim tunneling. Tunneling is used to alter the placement of
electrons in the floating gate. An electrical charge, usually 10-13 volts, is applied to the floating
gate. The charge comes from the column, or bitline, enters the floating gate and drains to a
ground.

This charge causes the floating gate transistor to act like an electron gun. The excited electrons
are pushed through and trapped on other side of the thin oxide layer, giving it a negative charge.
These negatively charged electrons act as a barrier between the control gate and the floating gate.
A special device called a cell sensor monitors the level of the charge passing through the floating
gate. If the flow through the gate is greater than fifty percent of the charge, it has a value of "1".
When the charge passing through drops below the fifty percent threshold, the value changes to
"0". Flash memory uses in-circuit wiring to apply the electric field to the entire chip, or to
predetermined sections known as blocks. This erases the targeted area of the chip, which can
then be rewritten. Flash memory works much faster than traditional EEPROMs because instead
of erasing one byte at a time, it erases a block or the entire chip, and then rewrites it.

 This chapter discusses how we write and rewrite to EEPROM.

2. EEPROM Access

EEPROM is readable and writable in the normal operation of the code. As we saw (or could not
see) from the File Register Map, there is no EEPROM space in the filer register area. This is not
surprising since filer register area is with RAM not with EEPROM. This causes some problem
in accessing EEPROM, since our access to I/O ports in particular is done by reading from or
writing to file registers such as PORTB, TRISB, etc. The access to EEPROM is done through
the following 4 file registers: EECON1 (address at 0x18C), EECON2 (not a physically
implemented register), EEADR (address at 0x10C), and EEDATA (address at 0x10D).

EECON1 register controls reading and writing of EEPROM. As illustrated in the figure, the
EEPGD bit is for selecting FLASH memory or EEPROM access. Apparently, for EEPROM
access, the EEPGD bit must be cleared. Other bits are discussed as we move on the read and
write processes.

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

353

EECON2 register is a dummy register only for EEPROM access control. This register is not a
physical one and this is only for a behind-scene process for write process. EEADR register is to
indicate the EEPROM address we try to access. By the way, EEPROM address starts from 0x00
and the highest address is 0xFF.

EEDATA hold an 8-bit data read from EEPROM or to be written to EEPROM. In other words,
the data byte read from EEPROM is stored into EEDATA register and the data must be moved
from EEDATA to another file register for the next byte read. In writing, a data byte to be written
must be written to EEDATA. In the write process, the address space in EEPROM is first erased
then written into the address space.

3. Reading EEPROM

To read a data from an address space in EEPROM, we must write the address to EEADR
register. Then, we clear the EEPGD bit of EECON1 register to select EEPROM, not FLASH
memory for our access. The third step is to set the read control bit RD of the EECON1 to
initiate reading from EEPROM. The RD bit will be cleared automatically after the read process.
At the very next instruction cycle after the RD bit is set, the read data from EEPROM is stored in
the EEDATA register. EEDATA register holds the data until another read operation is
performed or a write process is initiated.

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

354

Now let's make an EEPROM read subroutine. Since when we read we read multiple data from
EEPROM, this subroutine after reading a byte increases the address pointer by one so that we
don't have to put an address to EEADR every time we read. The name of subroutine is EEREAD.

;READING A DATA from EEPROM ----SUBROUTINE
EEREAD

banksel EECON1
bcf EECON1, EEPGD ;point to DATA MEMORY
bsf EECON1, RD ;READ ENABLE
banksel EEDATA
movf EEDATA, 0 ;MOVE THE DATA To W Reg
incf EEADR
RETURN

This subroutine, after reading a byte, stores the data in to W register. The EECON1 register bits
are to be declared on top of the code like this:

;for EEPROM
EEADR EQU 0x10D ;BANK 2
EEDATA EQU 0x10C ;BANK 2
EECON1 EQU 0x18C ;BANK 3
EECON2 EQU 0x18D ;BANK 3
EEPGD EQU 0x07 ;for EECON1
WR EQU 0x01 ;for EECON1
RD EQU 0x00 ;for EECON1
WREN EQU 0x02 ;for EECON1

Now then discus about how we call the subroutine EEREAD in a situation that we read 24 ten-
digit phone numbers already stored starting from address 0x00 in EEPROM, and print the
numbers on the PC screen using serial communication we already discussed. Remember that
each digit of a phone number occupies 1 byte, and thus 1 memory address space.

In the code below, COUNT will track the number of phone numbers. The COUNT can go up to
24d or 0x18 since we stored 24 phone numbers. The variable TEN tracks the number of digits in
a phone number. Since each phone number has 10 digits, the variable TEN can go up to 10d or
0x0A. When a byte data is retrieved to W register from EEDATA, it is sent TXREG register for
a serial communication with PC. For serial communication the TXPOLL subroutine we
developed in the Serial communication for serial transmission is recycled in the code.

banksel COUNT
clrf COUNT ;number of phone numbers reset to 0
banksel EEADR
movlw 0x00
movwf EEADR ;The starting address for EEPROM as 0
banksel TEN
clrf TEN ;the number of bytes in a phone number

;reset to 0
AGAIN ;this label is for the next phone number
RAGAIN ;this label is for next byte in a phone number

call EEREAD ;EEPROM read subroutine is called
;with starting address=0
;the byte data read was now in W register

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

355

;Type to SCREEN

banksel PIR1

TXPOLL
btfss PIR1, TXIF
goto TXPOLL ;check if transmission can start
movwf TXREG ;now send the content of W register to PC
incf TEN ;TEN is now increased by 1
btfss TEN, 0x03
GOTO RAGAIN
btfss TEN, 0x01
GOTO RAGAIN ;check if TEN is now 10

;if NOT, goto RAGAIN to read the next byte

call CRLF ;if TEN=0x0A (i.e., all 10 bytes are read
;then in the PC screen, we want to change
;the line

banksel COUNT
incf COUNT ;COUNT is now increased by 1 since

;the first phone number is successfully
;read from EEPROM and printed on PC

btfss COUNT, 0x04
GOTO AGAIN
btfss COUNT, 0x03 ;now check if COUNT=0x18
GOTO AGAIN ;if Not, read the next phone number

FINI NOP
GOTO FINI ;if COUNT=0x18, stop the code

If you read the comment lines, the code is self-explanatory. The subroutine CRLF is a routine
we discussed in serial communication of changing a line to the next. In the code, checking if a
number is 0x0A (for TEN) is done by bit checking of the number is focus. Since 0x0A is 1010b,
therefore, if bit 1 and bit 3 of TEN are 1, then we can say TEN=0x0A. For COUNT, since the
number in focus is 0x18=0001 1000b, we check bit 3 and 4 of COUNT if COUNT=0x18.

Now since we are familiar with EEPROM read, let's further proceed to have somewhat nicer
printout on the screen. What we want is to print out a prompt line (or a banner line) saying that
"PHONE NO READ:" followed by a 10 digit phone number as illustrated in the figure.

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

356

The banner part can be best handled if we use indirect instruction with FSR and IDNF register.
Remember that FSR is the pointer for INDF. And increasing or decreasing FSR actually does
the operation to INDF register. The bottom line is this: INDF contains a data in the RAM of an
address pointed by the content of FSR. For example, if FSR=0x31, then INDF holds the data
stored in the address 0x31 of the RAM.

So the structure of this venture is, first, to write the banner bytes. Second, read the first phone
number of 10 digits and print them after the colon(:) sign of the banner. Then, we pint the
banner again in the next line, followed by another phone number. This process goes on until we
read and print all 24 phone numbers.

First consider how we store each data byte of the banner 'PHONE NO READ:' in our code.
Since we have only 14 bytes of data, we choose to allocate 14 variables, one for each byte data,
in the CBLOCK ..ENDC, then we will put each data byte to each variable, the following
segments of the code show the process of variable allocation inside the RAM and give a byte
value to each of the variables, respectively.

First, the variable allocation part declares variables like EMB1, ELB2, etc for 'P', ''H', etc:

CBLOCK 0x30 ;to store 14 byte data for banner
;from RAM address 0x30

EMB1
EMB2
EMB3
EMB4
EMB5
EMB6
EMB7
EMB8
EMB9
EMB10
EMB11
EMB12
EMB13
EMB14 ;the address for this variable is 0x3E

ENDC

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

357

Second, now we declare or define the specific data byte for each of the variables:

banksel EMB1
; Write Banner Characters into RAM area

movlw 'P'
movwf EMB1
movlw 'H'
movwf EMB2
movlw 'O'
movwf EMB3
movlw 'N'
movwf EMB4
movlw 'E'
movwf EMB5
movlw 0x20
movwf EMB6 ;EMB6 now holds 'space' key
movlw 'N'
movwf EMB7
movlw 'O'
movwf EMB8
movlw 0x20
movwf EMB9 ;EMB9 is also with 'space'
movlw 'R'
movwf EMB10
movlw 'E'
movwf EMB11
movlw 'A'
movwf EMB12
movlw 'D'
movwf EMB13
movlw ':'
movwf EMB14

The following code is a complete code including all necessary subroutines and such. One small
problem of this code is that, since we have not written to EEPROM, the phone number part of
the output on your PC would be all blank. For a complete and meaningful run would come after
we write phone numbers to the EEPROM.

;EEP-r.asm
;
;
;This reads the EEPROM stored max 24 10-digit phone numbers
;
;EEPROM-->W-->PC (READING)
;
;
;Asynchronous mode
;
;Terminal set up: 8N1 19200

list P = 16F877
INDF EQU 0x00 ;Indirect Register
INTCON EQU 0x0b
STATUS EQU 0x03
PIR2 EQU 0x0d

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

358

FSR EQU 0x04 ;File Selection Register (Indirect addr ptr)
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RXREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)

;for EEPROM
EEADR EQU 0x10D ;BANK 2
EEDATA EQU 0x10C ;BANK 2
EECON1 EQU 0x18C ;BANK 3
EECON2 EQU 0x18D ;BANK 3
EEPGD EQU 0x07 ;for EECON1
WR EQU 0x01 ;for EECON1
RD EQU 0x00 ;for EECON1
WREN EQU 0x02 ;for EECON1
GIE EQU 0x07 ;for INTCON
EEIF EQU 0x04 ;for PIR2
;

;RAM for DELAY SUBROUTINE
CBLOCK 0x20 ; RAM AREA for USE at address 20h

Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m
TEN ;0x0a
COUNT ;0x18

ENDC ;end of ram block

;RAM for Banner Printing on a Monitor
CBLOCK 0x30

EMB1
EMB2
EMB3
EMB4
EMB5
EMB6
EMB7
EMB8
EMB9
EMB10
EMB11
EMB12
EMB13
EMB14

ENDC

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

359

;The Next 5 lines must be here
;because of bootloader arrangement
;Bootloader first execute the first 4 addresses
;then jump to the address what the execution directs
;===

org 0x0000 ;line 1
GOTO START ;line 2 ($0000)

;==
;start of the program from $0005

org 0x0005
START call delay1s

call delay1s
call Async_mode ;RX TX initialization

;
;Sending data by Software Polling

banksel EMB1
; Write Banner Characters into RAM area

movlw 'P'
movwf EMB1
movlw 'H'
movwf EMB2
movlw 'O'
movwf EMB3
movlw 'N'
movwf EMB4
movlw 'E'
movwf EMB5
movlw 0x20
movwf EMB6
movlw 'N'
movwf EMB7
movlw 'O'
movwf EMB8
movlw 0x20
movwf EMB9
movlw 'R'
movwf EMB10
movlw 'E'
movwf EMB11
movlw 'A'
movwf EMB12
movlw 'D'
movwf EMB13
movlw ':'
movwf EMB14

;starting logo: TYPE!
;==

banksel COUNT

clrf COUNT

banksel EEADR
movlw 0x00
movwf EEADR

;Type Inquiry

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

360

Again

banksel FSR
movlw 0x30 ;
movwf FSR ;pointer @ 0x30

banksel PIR1
TXPOLL2

btfss PIR1, TXIF
goto TXPOLL2 ;if full, wait
movf INDF,0 ;W is the content of (FSR)
movwf TXREG
incf FSR
btfss FSR, 0x06 ;0100 0000 is the next of 0011 1111
goto TXPOLL2

;Banner Printing Finished

;EEPROM READING
banksel TEN
clrf TEN

RAGAIN
call EEREAD

;Type to SCREEN

banksel PIR1

TXPOLL
btfss PIR1, TXIF
goto TXPOLL
movwf TXREG
incf TEN
btfss TEN, 0x03
GOTO RAGAIN
btfss TEN, 0x01
GOTO RAGAIN
call delay1s ;a little delay down (For displaying,

;this time delay is important)
call CRLF ;End of a phone number

;Just to show the process

banksel COUNT
incf COUNT
btfss COUNT, 0x04
GOTO AGAIN
btfss COUNT, 0x03
GOTO AGAIN

FINI NOP
GOTO FINI

;===EEPROM READING SUBROUTINE =================
EEREAD

banksel EECON1
bcf EECON1, EEPGD ;point to DATA MEMORY

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

361

bsf EECON1, RD ;READ ENABLE
banksel EEDATA
movf EEDATA, 0 ;MOVE THE DATA To W Reg
incf EEADR ;data pointer increased
RETURN

;

;==
;RX TX Initialization with Asyc Mode
;Async_mode Subroutine
Async_mode

banksel SPBRG
movlw BAUD ;B'00001111' (19200)
movwf SPBRG
banksel TXSTA
movlw TXMODE ;B'00100000' Async Mode
movwf TXSTA
banksel RCSTA
movlw RXMODE ;B'10010000' Enable Port
movwf RCSTA
return

;CRLF subroutine
CRLF

banksel PIR1
CR btfss PIR1, TXIF

goto CR
movlw 0x0D
movwf TXREG

LF btfss PIR1, TXIF
goto LF
movlw 0x0A
movwf TXREG
return

;DELAY SUBROUTINE
;==
;DELAY SUBROUTINES

; 1 instruction cycle for 20MHz clock is 0.2 us
; Therefore 120 uS delay needs 600 instuction cycles
; 600 =199*3 +3 ---->Kount=199=0xC7
; or =198*3 +6 ---->Kount=198=0xC6
; or =197*3 +9 ---->Kount=197=0xC5

Delay120us
banksel Kount120us
movlw 0xC5 ;D'197'
movwf Kount120us

R120us
decfsz Kount120us
goto R120us
return

;
;100us delay needs 500 instruction cycles

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

362

; 500 =166*3 +2 ---->Kount=166=0xA6
; or =165*3 +5 ---->Kount=165=0xA5
; or =164*3 +8 ---->Kount=164=0xA4
Delay100us

banksel Kount100us
movlw 0xA4
movwf Kount100us

R100us
decfsz Kount100us
goto R100us
return

;
;10ms delay
; call 100 times of 100 us delay (with some time discrepancy)
Delay10ms

banksel Kount10ms
movlw 0x64 ;100
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

;
;

;1 sec delay
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw 0x64
movwf Kount1s

R1s call Delay10ms
decfsz Kount1s
goto R1s
return

;
;
;10 s delay
;call 10 times of 1 s delay
Delay10s

banksel Kount10s
movlw 0x0A ;10
movwf Kount10s

R10s call Delay1s
decfsz Kount10s
goto R10s
return

;
;1 min delay
;call 60 times of 1 sec delay
Delay1m

banksel Kount1m
movlw 0x3C ;60
movwf Kount1m

R1m call Delay1s
decfsz Kount1m

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

363

goto R1m
return

;==
END ;END OF THE CODE

4. EEPROM Writing

Now let's move on to writing process of EEPROM. And we're all anxious of doing this. The
sequence of writing to EEPROM is long and each must be followed as explained here. First,
write the address of EEPROM where you want to store your byte data into EEADR register.
Second, write the byte data itself into EEDATA register. Now we have memory address and
data. Third, enable the EEPROM writing process by setting the WREN bit (bit 2) of EECON1
register. The fourth step involves several things to be done in the following order:

1. Disable Interrupt: We have not discussed about this subject yet, but take it easy. Just
clearing the GIE (Global Interrupt Enable) bit (INTCON<7>) of INTCON register would
be suffice for disabling interrupt.

2. Write the value 0x55 to EECON2: Remember that EECON2 is not a physical register and
this process is only for giving necessary writing time to EEPROM. Just follow this.

3. Write the value of 0xAA to EECON2: Same as above. No question. Just do this.
4. Set WR bit (bit 1) of EECON1 register: This actually starts the writing itself.
5. Enable Interrupt: Setting the GIE bit of INTCON register would do this step.

During the writing, WR bit is remained set and it is cleared when the writing is done (in addition,
when writing is done, the EEIF (bit 4) bit of PIR2 register is set). Therefore, we have to monitor
the WR bit and if it's cleared, we clear WREN bit to disable (or end) writing to EEPROM. Also,
we have to clear EEIF bit of PIR2 register. So here goes the fifth step: monitor WR bit if it is
cleared. If not, we have keep monitoring until it is cleared. Six, when WR bit is cleared, clear
WREN bit (EECON1<2>) and EEIF bit (PIR2<4>).

Now let's develop an EEPROM write subroutine, EEWRITE. As in EEREAD subroutine, at the
end of writing, we will increase the EEPROM memory address by 1for the next byte write. One
thing I did not mention in the above six steps of EEPROM writing is the clearing of EEPGD bit
of EECON1 for EEPROM access: setting would try to access FLASH memory. We have to
clear EEPGD bit before we proceed, as we did in EEREAD.

;EEWRITE subroutine
EEWRITE

banksel EEDATA
movwf EEDATA ;writing to EEPROM

banksel EECON1
bcf EECON1, EEPGD ;EEMPROM access (not FLASH)
bsf EECON1, WREN ;Write Enable

;Required Sequence
bcf INTCON, GIE ;Disable Interrupt

;GIE = INTCON<7>
movlw 0x55

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

364

movwf EECON2
movlw 0xAA
movwf EECON2
bsf EECON1, WR ;Begin to WRITE
bsf INTCON, GIE ;Enable Interrupt

;End of the Sequence
;Check if WR bit is cleared
WAIT btfsc EECON1,WR

goto WAIT
bcf EECON1, WREN ;DISABLE WRITING

;End of Writing
;Clear the EEIF bit of PIR2 (Write Complete Interrupt)
;BANK 0

banksel PIR2
bcf PIR2, EEIF
banksel EEADR
incf EEADR
RETURN

The way we repeat for 10 digit 24 telephone numbers is the same as in EEPROM reading
example code. And the way we type a banner asking for you to type your telephone number
using keyboard and on to PC screen is the same. The banner for writing telephone numbers is
shown in the figure.

After the banner prompt, as soon as the first number is typed, the number is stored in to W, then
echoed back to screen and written to EEPROM. This sequence of processes goes on for the
entire 10 numbers of the first phone number. Then at the next line, another banner will be
printed waiting for the first numeral of the second phone number. This thing repeats for 24 times
for the 24 phone number we write to EEPROM.

The following code is again a full complete code (except subroutines) for EEPROM write. The
subroutines needed for this code are the same ones we used for EEPROM read. However, the
EEWRITE subroutine is included in the code. So readers should include other necessary
subroutines copied from the EEPROM read code. Banner writing using indirect instruction
using FSR and INDF registers are the same with EEPROM read case.

;EEP-w.asm
;

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

365

;This program is to read a 10-digit telephone number from PC keyboard
;And store them in to EEPROM Data Memory
;
;EEPROM has 256 Byte
;Therefore This PROGRAM allows to read maximum 25 phone numbers
;But for programming simplicity it allows only 24 numbers (0x18=0001 1000)
;
;A companion program EEP-r.asm retrieves the number of phone numbers
; from the result of this program
;
;PC--->W--->EEPROM (WRITING)
;
;Asynchronous mode
;Terminal set up: 8N1 19200

list P = 16F877
INDF EQU 0x00 ;Indirect Register
INTCON EQU 0x0b
STATUS EQU 0x03
PIR2 EQU 0x0d
FSR EQU 0x04 ;File Selection Register (Indirect addr)
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RXREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)
RP0 EQU 0x05 ;STATUS<5>
RP1 EQU 0x06 ;STATUS<6>
;for EEPROM
EEADR EQU 0x10d ;BANK 2
EEDATA EQU 0x10c ;BANK 2
EECON1 EQU 0x18c ;BANK 3
EECON2 EQU 0x18d ;BANK 3
EEPGD EQU 0x07 ;for EECON1
WR EQU 0x01 ;for EECON1
RD EQU 0x00 ;for EECON1
WREN EQU 0x02 ;for EECON1
GIE EQU 0x07 ;for INTCON
EEIF EQU 0x04 ;for PIR2
;

;RAM for DELAY SUBROUTINE
CBLOCK 0x20

Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m
TEN ;ten digit

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

366

COUNT ; for counting up to 24 numbers (0x18)
ENDC ;end of ram block

;RAM for Banner Printing on a Monitor
CBLOCK 0x30

EMB1
EMB2
EMB3
EMB4
EMB5
EMB6
EMB7
EMB8
EMB9
EMB10
EMB11
EMB12
EMB13
EMB14
EMB15 ;0x3f

ENDC

;===
org 0x0000 ;line 1
GOTO START ;line 2 ($0000)

;==
org 0x0005

START call delay1s
call delay1s
call Async_mode ;RX TX initialization

;
;Sending data by Software Polling

banksel EMB1

; Write Banner Characters into RAM area
movlw 'T'
movwf EMB1
movlw 'Y'
movwf EMB2
movlw 'P'
movwf EMB3
movlw 'E'
movwf EMB4
movlw 0x20 ;SPACE
movwf EMB5
movlw 'P'
movwf EMB6
movlw 'H'
movwf EMB7
movlw 'O'
movwf EMB8
movlw 'N'
movwf EMB9
movlw 'E'
movwf EMB10
movlw 0x20 ;space
movwf EMB11

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

367

movlw 'N' ;
movwf EMB12
movlw 'O' ;
movwf EMB13
movlw ':' ;
movwf EMB14
movlw 0x20 ;space
movwf EMB15

;starting logo: TYPE!
;==
;Type Inquiry

banksel COUNT
movlw 0x0 ;
movwf COUNT ;initialize COUNT

banksel EEADR
movlw 0x0
movwf EEADR ;EEADR initialization at 0x00

again
banksel FSR
movlw 0x30
movwf FSR ;Pointer @0x30

banksel PIR1
TXPOLL2

btfss PIR1, TXIF
goto TXPOLL2 ;if full, wait
movf INDF,0 ;W is the content of (FSR)
movwf TXREG
incf FSR
btfss FSR, 0x06 ;0100 0000 is the the next of 0011 1111
goto TXPOLL2

; call delay1s
;Banner Printing Finished
;
;Reading Phone Number Part

movlw 0x00
movwf TEN ;10 - digit

RXPOLL
btfss PIR1, RCIF ;RX Buffer Full? (i.e. Data Received?)
goto RXPOLL
movf RXREG,0 ;received data to W

;echo the data
ECHO btfss PIR1, TXIF

goto ECHO ;if full, wait
movwf TXREG ;echo the character from Terminal

;now WRITING to EEPROM
call EEWRITE
banksel TEN
incf TEN
btfss TEN, 0x03
goto RXPOLL
btfss TEN, 0x01
goto RXPOLL

;TYPE LF and CR
call CRLF
incf COUNT

Chapter 12. Internal EEPROM access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

368

btfss COUNT, 0x04
goto again
btfss COUNT, 0x03
goto again

fini nop
goto fini

;
;===== EEWRITE subroutine
EEWRITE

banksel EEDATA
movwf EEDATA ;writing to EEPROM

banksel EECON1
bcf EECON1, EEPGD ;point to DATA Memory
bsf EECON1, WREN ;Enable it

;Required Sequence
bcf INTCON, GIE ;Disable Interrupt

;GIE = INTCON<7>
movlw 0x55
movwf EECON2
movlw 0xAA
movwf EECON2
bsf EECON1, WR ;Begin to WRITE
bsf INTCON, GIE ;Enable Interrupt

;End of the Sequence
;Check if WR bit is cleared
WAIT btfsc EECON1,WR

goto WAIT
bcf EECON1, WREN ;DISABLE WRITING

;End of Writing
;Clear the EEIF bit of PIR2 (Write Complete Interrupt)
;BANK 0

banksel PIR2
bcf PIR2, EEIF
banksel EEADR
incf EEADR
RETURN

;==

;Other subroutines must be placed here
;==

END ;END of CODE

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

