
Chapter 5. Serial Communication 59

Chapter 5: Serial Communication

1. Serial Communication- Review

Unlike parallel communication which transmits or receives a byte of data, for an 8-bit parallel
communication, simultaneously, serial communication sends or receives a single bit at a time.
Although this is slower than parallel communication, which allows the transmission of an entire byte
at once, it is simpler and can be used over longer distances.

Serial communication is a very common protocol for device communication that is standard on almost
every PC. Most computers include two serial ports. Serial communication is also a common
communication protocol that is used by many devices for instrumentation; numerous GPIB-
compatible devices also come with a serial communication port. Furthermore, serial communication
can be used for data acquisition in conjunction with a remote sampling device.

Serial communication has two types: asynchronous and synchronous communications.
 Synchronous communication requires more complex interface and clock is sent along with data with
higher rate than asynchronous communication. Synchronous communication requires that each end of
an exchange of communication respond in turn without initiating a new communication. A typical
activity that might use a synchronous protocol would be a transmission of files from one point to
another. As each transmission is received, a response is returned indicating success or the need to
resend.

On the other hand, asynchronous communication is usually for a situation where data can be
transmitted intermittently rather than in a steady stream. For example, a telephone conversation
is asynchronous because both parties can talk whenever they like. If the communication were
synchronous, each party would be required to wait a specified interval before speaking.
The difficulty with asynchronous communications is that the receiver must have a way to
find the end of talks of the other side so that one starts to speak. In computer communications, this is
usually accomplished through special bits to indicate the beginning and the end of each piece of data.
Asynchronous communication, therefore, has simpler interface and does not send clock, but requires
start and stop bits. Asynchronous communication protocol is our main interest in this chapter.

Serial Communication Specifications
RS-232 (Recommended standard-232) is a standard interface approved by the Electronic
Industries Association (EIA) for connecting serial devices. In other words, RS-232 is a long-
established standard that describes the physical interface and protocol for relatively low-speed
serial data communication between computers and related devices. EIA defined it originally
for teletypewriter devices. In 1987, the EIA released a new version of the standard and changed
the name to EIA-232-D. Many people, however, still refer to the standard as RS-232C, or just RS-
232. RS-232 is the interface that your computer uses to talk to and exchange data with your
modem and other serial devices. The serial ports on most computers use a subset of the RS-232C
standard.

The electrical specification RS232C standard specifies many parameters such as :
1. A "Space" (logic 0) will be between +3 and +25 Volts.

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 60

2. A "Mark" (Logic 1) will be between -3 and -25 Volts.
3. The region between +3 and -3 volts is undefined.
4. An open circuit voltage should never exceed 25 volts. (In Reference to GND)
5. A short circuit current should not exceed 500mA. The driver should be able to handle this without
damage. (Take note of this one!)

Above is no where near a complete list of the EIA standard. Line Capacitance, Maximum Baud Rates
etc are also included. For more information please consult the EIA RS232-E standard. It is interesting
to note however, that the RS232C standard specifies a maximum baud rate of 20,000 bps, which is
rather slow by today's standards. Revised standards, EIA-232D & EIA-232E were released, in 1987
& 1991 respectively.

On the other hands, there are two similar standards similar to RS232: RS422 and RS485.

RS422 is a Standard interfaces approved by EIA, and designed for greater distances and higher Baud
rates than RS232. In its simplest form, a pair of converters from RS232 to RS422 (and back again) can
be used to form an "RS232 extension cord." Data rates of up to 100K bps and distances up to 4000 Ft.
can be accommodated with RS422. RS422 is also specified for multi-drop (party-line) applications
where only one driver is connected to, and transmits on, a "bus" of up to 10 receivers.

RS485 is an EIA standard for multipoint communications. It supports several types of connectors,
including DB-9 and DB-37. RS-485 is similar to RS-422 but can support more nodes per line RS485
meets the requirements for a truly multi-point communications network, and the
standard specifies up to 32 drivers and 32 receivers on a single (2-wire) bus.

A brief comparison of the above 3 standards is summarized in the table below.

Specifications RS232 RS422 RS488
Mode of Operation Single Ended Differential Differential
Max No. of Tx and Rx 1Tx, 1Rx 1Tx, 10Rx 32Tx, 32Tx
Max Cable Length 50 ft 4000 ft 4000 ft
Max Data Rate 20 kbps 100kbps 100kbps
Min Driver Output range ±5 to ±15 V ± 2 V ± 1.5 V
Max Driver Output Range ± 25 V ± 6V ± 6V

RS232 Level Converter
Almost all digital devices, including 16F877 and PIC board, require either TTL or CMOS logic levels.
Therefore the first step to connecting a device to the RS-232 port is to transform the RS-232 levels
back into 0 and 5 Volts. This level conversion is done by RS-232 Level Converters. The most
common RS-232 Level Converter is MAX232 Multi-channel RS-232 Driver chip, which includes a
charge pump which generates +10V and -10V from a single 5V supply, from Maxim Semiconductor.
The package contains 2 drivers and 2 receivers: in other words, one MAX232 chip can support two
serial communication ports. MAX232 needs electrolyte capacitors and whose values are determined
by which device is used. For MAX232CPE, a DIP package, need 1.0 uF capacitors, while
MAX232ACPE requires 0.1 uF capacitors. From the listed capacitors, capacitor C5 may be omitted.
Now you better understand the minimum hardware in your PIC board especially around the MAX232
chip.

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 61

Fig. 19 DIP connection to capacitors

Hardware Properties
Devices which use serial cables for their communication are split into two categories: Data
Communications Equipment(DCE) and Data Terminal Equipment (DTE). DCEs are devices such as
your modem, plotter etc., while DTE is your PC or Terminal. Therefore, if you have a serial
communication connection from a PIC board to a PC, your PIC board is a DCE device.

As we discussed above, a typical DTE is a computer and a typical DCE is a modem. Then, let's
consider communication speed between DTE and DCE. However, the speed from DTE to DCE,
referred to as terminal speed, must be faster than the speed between DCE and DCE, referred to as line
speed, as in the link between modems.

The most common modems, if they have in addition to Ethernet connection, today are 28.8Kbps or
33.6Kbps modems. Therefore we should expect the DCE to DCE speed to be either 28.8K or 33.6K.
Then, what would be the terminal speed between DTE and DCE? In other words, if you have 28.8
Kbps, do you always have to set your serial communication software such as Hyper Terminal in
Windows system at 28.8 Kbps as PC's terminal speed?

Let's look inside a modern modem. Today's Modems have Data Compression built into them which
compresses and decompresses data. An 1 to 4 compression would be typical of a text file
transmission. If we were transferring that text file at 28.8K (DCE-DCE), then when the modem
compresses it you are actually transferring 115.2 Kbps between computers and thus have a DCE-DTE
speed of 115.2 Kbps. This is why the DCE-DTE is usually set much higher than your modem's
connection speed.
So if DTE to DCE speed is much faster than DCE to DCE speed, sooner or later data is going to get

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 62

lost as a small Modem buffer overflows, thus flow control is used. Flow control has two basic
varieties: hardware or software control. Software flow control, sometimes expressed as Xon/Xoff,
uses two characters Xon and Xoff. Xon is normally indicated by the ASCII 17 character where as the
ASCII 19 character is used for Xoff. When the computer fills it up the buffer, the modem sends an
Xoff character to tell the computer to stop sending data. Once the modem has room for more data it
then sends an Xon character and the computer sends more data. This type of flow control has the
advantage that it doesn't require any more wires as the characters are sent via the Transmit (TxD) and
the Receive (RxD) lines. Hardware flow control is also known as (Request to Send)RTS/ (Clear to
Send) CTS flow control. It uses two extra wires (i.e., RTS and CTS) for the control. The data is
transmitted and received by the TxD and RxD lines. Thus hardware flow control will not slow down
transmission times like Xon/Xoff does. When the computer wishes to send data it takes active the
RTS line. If the modem has room for this data, then the modem will reply by taking active the CTS
and the computer starts sending data. If the modem does not have the room then it will not send a
CTS.

Serial Communication Ports
Serial Ports come in two "sizes" maybe three if we include the RJ-45 (Registered Jack – 45) ports:
The RJ-45 connector is commonly used for network cabling and for telephony applications. It's also
used for serial connections in special cases. However, our focus is on the typical two serial ports and
connectors: D-Type 25 pin connector and the D-Type 9 pin connector.
Both types are male on the back of the PC, thus you will require a female connector on your PIC
board. Below is a table of pin connections for the 9 pin and 25 pin D-Type connectors and RJ-45.

Fig.
20(a) D-Type 25 pin connector Fig. 20(b)D-Type 9 pin connector Fig. 20(c) RJ45

D-Type
25 Pin No.

D-Type
9 Pin No.

RJ-45 type
8 Pin No.

Abbreviation Full Name

2 3 5 TxD Transmit Data
3 2 6 RxD Receive Data
4 7 7 CTS Clear To Send
5 8 8 RTS Request To Send
6 6 DSR Data Set Ready
7 5 4 SG Signal Ground
8 1 2 CD Carrier Detect
20 4 3 DTR Data Terminal Ready
22 9 1 RI Ring Indicator

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 63

Pin description

• TxD: This pin carries data from a DTE (or a PC) to a DCE (or a modem or our PIC).
• RxD: This pin carries data from a DCE to a DTE.
• DTR (Data Terminal Ready): This pin is used by a DTE to signal that it is ready to

communicate with a DCE.
• DSR (Date Set Ready): -Similarly to DTR, this pin is an indication from a DCE that a link is

ready.
• CD (Carrier Detect): This pin is to indicate that a DCE has received carrier from a remote

DCE.
• RTS (Request To Send): This pin is used for DTE to request clearance from a DCE to send

data to the DCE.
• CTS (Clear To Send): This pin is used by the DCE to acknowledge the DTE's RTS Signal.
• RI (Ring Indicator): This pin is used to indicate an incoming call rings a phone. In an auto

answer modem, this pin is used to signal a receipt of a telephone rign.

In general, the CD and the RI lines are only available in connections to a modem. Because most
modems transmit status information to a PC when either a carrier signal is detected (i.e. when a
connection is made to another modem) or when the line is ringing, these two lines are rarely used.

Universal Asynchronous Receiver/Transmitter (UART)

In order to do anything useful with derially transmitted data, we must convert it back to parallel. This
series-to-parallel conversion is done by Universal Asynchronous Receiver/Transmitter (UART). One
type of UART you can easily find insider your PC is the Intel 8250 and compatibles. These devices
have configuration registers accessible via the data and address buses which have to be initialized
before use. Most Microprocessors / Microcontrollers including 16F877 has build-in Serial
Communication Interfaces (SCI). Therefore there is no need to connect a 40 pin 16550 or 8250 UART
to your PIC 16F877 chip.

PIC connection via serial cable to PC
The connection of PIC 16F877's UART via a serial cable to the PC's COM port requires only 3 wires:
TxD, RxD & SG. Go back to the hardware diagram and look for these 3 pins and their connections to
16F877 via RS-232 level converter (MAX232). Any data transmitted from the PC is received by the
TxD pin of DB-9 connector and to the RXin pin of MAX232. Then, logic leveled data from RXout
are fed to RX pin of 16F877. Similarly, any data in logic level transmitted from 16F877's TX pin
arrives at TXin pin of MAX232 and, after their levels are converted to RS-232 standard, comes out
from the Txout pin of MAX232, and is connected to Pin #2 (RxD) of DB-9 Connector to PC's COM
port. The Signal Ground (SG) must be connected so both grounds of PC and PIC board are common
to each other.

RS232 Protocol and Waveforms
RS-232 communication is asynchronous. That is a clock signal is not sent with the data. Each word is
synchronized using it's Start bit, and an internal clock on each side keeps tabs on the timing.

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 64

The diagram above, shows the expected waveform from TxD pin of the serial communication port of
16F877 when using the common 8N1 format. 8N1 signifies 8 Data bits, No Parity and 1 Stop bit
format. The RS-232 line, when idle, is in the Mark state (Logic 1).
A transmission starts with a start bit which is Logic 0. Then each bit is sent down the line, one at a
time. The LSB (Least Significant Bit) is sent first. A Stop bit (Logic 1) is then appended to the signal
to make up the end of a transmission.

The diagram shows the next bit after the Stop bit to be Logic 0. This indicates that another word is
following, that is, the logic 0 following the Stop bit is the Start bit for the next transmission. If there is
no more data, then the receive line will stay in it's idle state, logic 1. The data sent using this method,
containing a data between a Start bit and a Sop bit, is said to be framed.

The above diagram of logic level coming out of 16F877 is converted to an RS-232 specified level via
MAX232. Therefore, the actual input to the COM port of PC would look like the diagram shown
below.

RS-232 logic levels uses +3 to +25 volts to signify a "Space" (Logic 0) and -3 to -25 volts for a
"Mark" (logic 1). Any voltage in between these regions (i.e., between +3 and -3 Volts) is undefined.

By the way, who or which generates this serial communication bit information from a byte data? It is
the internal UART module of 16F877. Therefore, for the waveforms and protocol, it is just for
understanding how serial communication works. All you have to do is utilize the internal serial
communication module by configuring and operating the registers of the module. The utilization of
the UART module is discussed soon.

2. Terminal Program in Computer

To serially communicate your 16F877 with your PC, the PC must have a serial communication
software (or terminal program) to make your serial port ready and serial communication operational.
Fortunately, any PC with Windows operating systems comes with a terminal program:
Hyperterminal. Apple Macintosh users will need to obtain a terminal program from a shareware
web site, or from their software supplier. ZTerm is a good terminal program which can be obtained
from most of the popular download sites for the Mac.

To run HyperTerminal for PIC communication with 8N1 format with 19200 bps, follow the steps.

Step 1. Load HyperTerminal by Click Start > Run. In the box which appears type in HYPERTRM
and click OK.

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 65

(Or click Start>Programs>Accessories>Communications>HyperTerminal)

If you see the error message 'Cannot find HYPERTRM' you will need to install HyperTerminal:
Click Start > Settings > Control Panel > Add / Remove Programs.
(a) In Add / Remove Programs select Properties and then click the Windows Setup tab.
(b) Double-click Communications
(c) Check the box for HyperTerminal
(d) Click OK, and then OK again to install.
Note: You may be asked for your Windows installation disk for this procedure.

Step 2. When HyperTerminal starts you will be presented with a 'Connection Description' dialogue
box, click 'Cancel' to continue.

Step 3. Select your COMPort: Select 'File' then 'Properties' from the menu bar, and the 'New
Connection Properties' window will open. Click on the arrow for the 'Connect Using' drop down
box Select 'Direct to ComX' (where X is the COMPort you are using to connect the modem. - e.g.
COM1, or COM2, etc). Click OK.

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 66

Step4: Port Setting: The COM port properties box comes up. Make sure that that you set the Baud
rate to 19200, and No Stop Bit, 8 Data bits. And select None for Flow control. Click OK.

Step 5: Emulation Setup: Click on the Settings tab. Change the Emulation type to VT100 .Now,
click on OK.

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 67

Step6: Save your file name as test.ht, and run it. Then, the following window will pop up and
your computer is ready to communication with the PIC board. In the Serial Communication Module
study for 16F877, our main focus is to display what 16F877 reads and processed for verification or
display purpose. Also, we will receive command typed by the keyboard from the computer side.

The last concern in a terminal program involves the hardware configuration of your computer.
Probably, you do not have to worry about the COM port address and Interrupt request (IRQ) setting to
run a serial communication software. However, if your serial communication does not work and that
stems from COM port of your PC, this information may help you to find a solution. Below is the
standard port addresses and these should work for most PCs.

NAME ADDRESS IRQ
COM1 3F8 4
COM2 2F8 3
COM3 3E8 4
COM4 2E8 3

3. 16F877 Serial Communication Module (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two
serial I/O modules provided by 16F877: the other is the SSP module. The USART is also known as a
Serial Communications Interface (SCI). The USART can be configured as a full duplex asynchronous
system that can communicate with peripheral devices such as CRT terminals and personal computers,
or it can be configured as a half duplex synchronous system that can communicate with peripheral
devices such as A/D or D/A integrated circuits, Serial EEPROMs etc. As mentioned earlier, the focus
of the serial communication is centered on the asynchronous communication.

The configure and operation of the USART module is controlled by a few SFRs: RCSTA (Receive
Status and Control Register in bank 0 at 18h), TXSTA (Transmit Status and Control Register in bank
1 at 98h), SPBRG (Baud Rate Generator in bank 1 at 99h), and PIR1 (Peripheral Interrupt Register 1
in bank 1 at 0Ch).
In addition, since the two serial ports TX (pin #25) and RX(pin #26) can also be used as PORTC pins,

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 68

while setting the SPEN (Serial Port Enable Bit) bit (RCSTA<7>), the TRISC bits must be configured:
the two pins must be set.
Let's first examine the TXSTA register. As indicated below, for an synchronous communication with
8N1 format, we configure the register as follows:

TXSTA: Transmit Status and Control Register
bit 7 bit 0

CSRC TX9 TXEN SYNC ---- BRGH TRMT TX9D
 X

TX9: 9-bit Transmit Enable bit
1 = 9-bit transmission
0 = 8-bit transmission

TXEN: Transmit Enable bit
1 = Transmit enabled
0 = Transmit enabled

SYNC: Mode Select bit
1 = Synchronous mode
0 = Asynchronous mode

BRGH: Baud Rate Select bit
1 = High speed
0 = Low speed

TRMT: Transmit Shift Register
Status bit
1 = TSR empty
0 = TSR full

TX9D: 9th bit of data
Can be parity bit

TXSTA<7> (CSRC): Don't care for this mode. Let's clear it.
TXSTA<6> (TX9): Since the format 8N1 dictates 8-bit data transmission, it should be cleared.
TXSTA<5> (TXEN): Set this bit to initiate data transmission.
TXSTA<4> (SYNC): Clear this bit to select asynchronous mode.
TXSTA<3> : Unused. Let's clear it.
TXSTA<2> (BRGH): This is to select not the Baud rate itself but to select high Baud or low Baud
rate. For a given Baud rate like 19200 bps, whether setting or clearing this bit determines the content
of SPBRG for the chose Baud rate. Set or clear works, but with proper calculation of the content for
SPBRG. For the time being let's clear.
TXSTA<1> (TRMT):This bit is used to check the current status of data transmission. So this bit is
not to be set or cleared. By the, this bit is not going to be used even for this purpose: we are going to
use a flag of PIR1 register. Details on this subject will be discussed with PIR1 register explanation.
TXSTA<0> (TX9D): This pin is used only when 9-bit data transmission or 1 parity bit format is

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 69

selected. Since 8N1 format does not involve either one, this pin set is ignored. Then clear it.

So asynchronous communication mode with 8N1 format would make the content of TXSTA by the
following instructions:
 banksel TXSTA ;B B
 movlw B'00100000' ;76543210
 ;00100000
 movwf TXSTA ;Asyn mode, 8N1 format, low baud rate,

;TX enable

The next register we will investigate is RCSTA.

RCSTA: Receive Status and Control Register
bit 7 bit 0

SPEN RXP SREN CREN ---- FERR OERR RX9D
SPEN: Serial Port Enable bit
1 = Serial port enabled
0 = Serial port disabled

RX9: 9-bit Receive bit
1 = 9-bit reception
0 = 8-bit reception

SREN: Single Receive bit
X

CREN: Continuous Receive bit
1 = Enables
0 = Disables

X
FERR: Framing Error
1 = Framing error
0 = No framing error

OERR: Overrun Error
1 = Overrun error
0 = No overrun error

RX9D: 9th bit of data,
can be parity bit

Now we configure the RCSTA register by setting or clearing each bit.
RCSTA<7> (SPEN): Set this bit to enable (start) reception.
RCSTA<6> (RX9): Since the format 8N1 dictates 8-bit data transmission, it should be cleared.
RCSTA<5> (SREN): Not used. So clear it.
RCSTA<4> (CREN): Set this bit to receive data continuously.
RCSTA<3> : Unused. Let's clear it.
RCSTA<2> (FERR): This bit is used to check the current status of data reception for frame error. In

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 70

configuration we gave nothing to do. For the time being let's clear.
RCSTA<1> (OERR): This bit is used to check the current status of data reception for overrun error .
In configuration we gave nothing to do. For the time being let's clear.
RCSTA<0> (RX9D): This pin is used only when 9-bit data transmission or 1 parity bit format is
selected. Since 8N1 format does not involve either one, this pin set is ignored. So clear it.

So asynchronous communication mode with 8N1 format would make the content of RCSTA by the
following instructions:

 banksel RCSTA ;B B
 movlw B'10010000' ;76543210
 ;10010000
 movwf RCSTA ;8N1 format and RX enabled

The next step is to configure SPBRG with the select Baud rate of 19200. The SPBRG is a dedicated
8-bit Baud rate generator. Therefore the value for SPBRG is 0 to 255 (0 – FFh). The SPBRG register
controls the period of a free running 8-bit timer. In asynchronous mode, as explained before, bit
BRGH (TXSTA<2>) controls the baud rate. The content of SPBRG is determined by the formula
computation of the baud rate for different USART modes. Given the desired baud rate and fosc, the
nearest integer value for the SPBRG register can be determined.

When TXSTA<2>=0 (low rate selection), the formula for the value of SPBRG, NBRG, is:

1
64

−
×

=
d

osc
BRG B

f
N ,

where, fosc is crystal oscillation frequency and B is a desired Baud rate.

If TXSTA<2>=1 (high rate selection), the formula for the value of SPBRG, NBRG, is changed to:

1
16

−
×

=
d

osc
BRG B

f
N .

Therefore, with low rate selection with TXSTA<2> cleared, the value for NBRG for 19200 bps for
20MHz crystal oscillation is:

1527.151
1920064

000,000,201
64

→=−
⋅

=−
×

=
d

osc
BRG B

f
N (the nearest integer).

With the chosen value 16, the actual Baud rate we can get is:

19531
1664

000,000,20
)1(64

=
⋅

=
+⋅

=
BRG

osc
c N

f
B

So there is (%)7.1100
19200

1920019531
=×

− error, and it is acceptable.

The instructions to configure SPBRG are:

 banksel SPBRG
 movlw 0x0F ;15 in decimal
 movwf SPBRG ;[SPBRG]=0Fh for 19200bps

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 71

There are two more registers involved in the USART module for an asynchronous communication: the
transmit buffer register (TXREG) and the receive buffer register (RCREG). The way these registers
work is stemmed from the internal blocks for transmission and reception.

Let's first look at the USART transmission block diagram shown below. The data to be transmitted is,
as you see, first placed to an 8-bit buffer (TXREG). The flag bit, TXIF (PIR1<4>), is to indicate the
buffer is empty (TXIF=1) or full (TXIF=0). PIR1 is the Peripheral Interrupt Register located in bank
0 at 0Ch. In other words, by polling the TXIF bit, we know if we can send the next data or not. When
the buffer is full, we have to wait until it is empty. The content inside TXREG is parallel transmitted
to the transfer shift register (TSR), which is not accessible for us. The clock to shift one bit at a time,
LSB first and MSG last, comes the Baud rate generator (SPBRG) but this must be enabled by the
transmit enable bit (TXEN). When all the bits are shifted, its status is flagged by TRMT bit of
TXSTA. In the TSR, additional bits such as Start, Stop, and Parity are inserted or
concatenated. The final stage of the transmission if controlled and enabled by SPEN (serial
communication enable bit) and bits are sent out to the TX pin (#26) of 16F877.

Fig. 21 USART transmission block diagram

Therefore, sending out a data can be done by the following instructions:

 movlw 'A' ;character to send out
Txwait btfss PIR1, TXIF ;is TXIF bit set? (or is TXREG empty?)
 goto Txwait ;No, it's still full
 movlw TXREG ;yes. Place your data to TXREG

The reception of data to the USART receive block diagram is shown below. The bit stream arrived at
the RX pin (#26) of 16F877 is entered only when the serial communication enabled by the SPEN bit
of RCSTA. Then, the bit information is captured and recovered by the clocking of SPBRG. So if the
input data is not in the same Baud rate as in the receive block, the captured and recovered data cannot
be the same data sent. The recovered data is fed to the internal Receive Shift Register (RSR). In

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

ckim
Typewritten Text
====movwf

Chapter 5. Serial Communication 72

RSR, frame errors and overrun errors are flagged, and the frame bits (Start, Stop, and/or Parity)
are removed before transferred to the Receive Buffer Register (RCREG). The status of RCREG is
flagged by the RCIF bit (PIR1<5>): 1 when buffer is full and 0 when empty. Therefore, when in
reception mode, we have to monitor the RCIF bit if we can safely move the content of RCREG to W
register.

Therefore, reception can be done by the following instructions:

Rxwait btfss PIR1, RCIF ;is TXIF bit set? (or is RCREG full?)
 goto Rxwait ;No, it's empty
 movf RCREG, 0 ;yes. Move the data to W

Fig. 22 USART receive block diagram

4. PIC16F877 Serial Communication Coding Examples

Key Echoing
As the first example for serial communication, we want to write a code to echo the keyboard. What it
means is display the character, on the monitor of your PC, of a key typed by your keyboard. It sounds
odd to beginners. Why do we need this kind of program? Isn't any character I type on my keyboard
automatically displayed on the monitor, as I write a Word file? When you run the
Hyperterminal, your computer is ready for serial communication via a COM port with other
devices. When you type a key, it is an action of transmission of the key to the COM port. When data
is received from the COM port, it is displayed on the monitor. In other words, under Hyperterminal,
your keyboard is not connected to the monitor to display the key you type.

In other words, to display a key on your monitor must involve the other device, which is our 16F877.
What involves is like this: when we type a key, the data is sent from the COM port in a speed set by
Baud rate setting say 19200bps, via a serial cable, to the DB-9 pin of the PIC board. This RS-232
level data is converted to a logic level data by MAX232 level converter. The logic level data now

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 73

arrives at the RX pin of 16F877. If the USART module and an asynchronous communication are
enabled with the same Baud rate of 19200bps by the configuration of the RCSTA, TXSTA, and
PSBRG, then the data would arrive at the RCREG register. As soon as the RCREG is full, RCIF flag
is set. Then, we move the content of RCREG to W to store the key character sent by the keyboard.
As we know, this reception does not display the key character on the monitor. We have to sent back
the key character to the computer.

So we place the content of W register to TXREG when TXREG is empty, which is flagged by TXIF
bit of PIR1. The data in TXREG is eventually transmitted back bit by bit to the computer through the
same path, and the computer upon reception of the data display it on the monitor. It involves much
more than one thinks it would.

Therefore the following echo program thus consists of mainly three parts: configuration of registers,
reception, and transmission. Examine the code by carefully following comments. Note that the
MPLAB directive banksel does not go with any label. In other words, there should not be a label at
the same line with banksel directive.

;rxtx-v1.asm
;
;This program uses USART moddule and RX & TX pins of 16F877
;
;The program echoes on PC screen a character typed from keyboard
;
;Asynchronous mode of serial communication
;
;
;PC's Hyper Terminal Set-Up: 8N1 19200
;Baud: 19200
;Data Bit: 8
;Parity: None
;Stop Bit: 1
;Control: None

 list P = 16F877

STATUS EQU 0x03 ;Declaration of registers and bits
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer Status 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer Status 1-empty 0-full

;
;===
 org 0x0000 ;line 1
 goto START ;line 2

 org 0x05
START
;Configuration Part
 banksel SPBRG
 movlw 0x0F ;15 for 19200bps
 movwf SPBRG

 banksel TXSTA

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 74

 movlw B'00100000' ;Asynchronous mode, 8N1 format

 banksel RCSTA
 movlw B'10010000' ;USART enabled with async mode
 movwf RCSTA

;Reception Part

 banksel PIR1
Rxwait
 btfss PIR1, RCIF ;RX Buffer Full? (i.e. Data Received?)
 goto Rxwait
 movf RCREG,0 ;mode received data to W
;
; Now the key is stored in W register

;Echo Back (Transmission Part)
 banksel PIR1
Txwait

btfss PIR1, TXIF ; Check if TX buffer is empty
 goto Txwait
 movwf TXREG ; Place the character (in W) to TX buffer

 goto Rxwait ;for next key

 END
; end of code

Since serial communication is frequently used for display and value check, it would be much better to
make the reception and transmission parts into subroutines. Even the configuration part can be made
into a subroutine.

A subroutine starts with the subroutine's name as label, and ends with return. The reception
subroutine Rxpoll goes like below.

RXPOLL ;The result is placed in W register
 banksel PIR1
 btfss PIR1, RCIF ;RX Buffer Full? (i.e. Data Received?)
 goto RXPOLL
 banksel RCREG
 movf RCREG,0 ;received data to W
 return

The subroutine for transmission Txpoll looks like this:

TXPOLL ;Send data placed in W register
 banksel PIR1
 btfss PIR1, TXIF ; Check if TX buffer is empty
 goto TXPOLL
 banksel TXREG
 movwf TXREG ; Place the character in W to TX buffer
 return

The configuration part for asynchronous communication Async can go like this:

Async ;Async mode with 8N1 format of 19200bps
 banksel SPBRG
 movlw 0x0F ;15 for 19200bps

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 75

 movwf SPBRG

 banksel TXSTA
 movlw B'00100000' ;Asynchronous mode, 8N1 format

 banksel RCSTA
 movlw B'10010000' ;USART enabled with async mode
 movwf RCSTA
 return

Then the code for key echo can be rewritten like below.

;rxtx-v2.asm
;
;This program uses USART module and RX & TX pins of 16F877
;
;The program echoes on PC screen a character typed from keyboard
;
;Asynchronous mode of serial communication
;
;
;PC's Hyper Terminal Set-Up: 8N1 19200
;Baud: 19200
;Data Bit: 8
;Parity: None
;Stop Bit: 1
;Control: None

 list P = 16F877

STATUS EQU 0x03 ;Declaration of registers and bits
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer Status 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer Status 1-empty 0-full

;
;===
 org 0x0000 ;line 1
 goto START ;line 2
;==
 org 0x05
START
;Configuration Part
 call Async ;async mode
Again
 call Rxpoll ;receive a key
 call Txpoll ;transmit the key
 goto Again ;repeat

;Subroutines
RXPOLL ;The result is placed in W register
 banksel PIR1
 btfss PIR1, RCIF ;RX Buffer Full? (i.e. Data Received?)
 goto RXPOLL
 banksel RCREG
 movf RCREG,0 ;received data to W
 return

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 76

;
TXPOLL ;Send data placed in W register
 banksel PIR1
 btfss PIR1, TXIF ; Check if TX buffer is empty
 goto TXPOLL
 banksel TXREG
 movwf TXREG ; Place the character in W to TX buffer
 return

;
Async ;Async mode with 8N1 format of 19200bps
 banksel SPBRG
 movlw 0x0F ;15 for 19200bps
 movwf SPBRG

 banksel TXSTA
 movlw B'00100000' ;Asynchronous mode, 8N1 format

 banksel RCSTA
 movlw B'10010000' ;USART enabled with async mode
 movwf RCSTA
 return
;
 END ;End of Code

Hex Number Display
The next example is to display a measured value by the PIC board to the monitor of the computer.
Consider a situation that you are monitoring room temperature, voltage, or current using the Analog-
to-Digital module of 16F877, then you are displaying the measured value on the monitor. This case
you are actually posting a hexadecimal numbers. Consider another case that you are going to find the
command code for a TV remote controller using an Infrared (IR) receiver. The code 16F877 received
via the IR receiver must be displayed on a monitor to decode (or match) a button pressed to a code the
receiver received. In either case, it would be better to know how we send a hexadecimal value to the
monitor.

Here we have to remember that when we send a hex number to the computer, the computer will
displace the number on the monitor as ASCII (American Standard Code for Information Interchange)
data. An ASCII code is the numerical representation of a character such as 'a' or '@' or an action of
some sort. ASCII was developed a long time ago and now the non-printing characters are rarely used
for their original purpose. Below is the ASCII character table and this includes descriptions of the first
32 non-printing characters. To get a hex equivalent for an ASCII character, use a corresponding row
number from the left column as the first hex digit, and a corresponding column number from the top
row for the second digit. For example, a hex equivalent for the character 'C' is 43h.

* 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 77

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~

Therefore character 'P' in ASCII code is 50h or 01010000b. Similarly, character 'I' in ASCII code is
49h or 01001001b.

ASCII was actually designed for use with teletypes and so the descriptions are somewhat obscure.
The following is a more detailed description of the first 32 non-printing (or special) ASCII characters,
often referred to as control codes.

• NUL (null)
• SOH (start of heading)
• STX (start of text)
• ETX (end of text)
• EOT (end of transmission): Not the same as ETB
• ENQ (enquiry)
• ACK (acknowledge)
• BEL (bell): Causes teletype machines to ring a bell. Causes a beep in many common terminals

and terminal emulation programs.
• BS (backspace): Moves the cursor move backwards (left) one space.
• TAB (horizontal tab): Moves the cursor right to the next tab stop.
• LF (line feed) - Moves the cursor (or print head) to a new line.
• VT (vertical tab)
• FF (form feed): Advances paper to the top of the next page (for a printer).
• CR (carriage return): Moves the cursor all the way to the left, but does not advance to the next

line.
• SO (shift out): Switches output device to alternate character set.
• SI (shift in) : Switches output device back to default character set.
• DLE (data link escape)
• DC1 (device control 1)
• DC2 (device control 2)
• DC3 (device control 3)
• DC4 (device control 4)
• NAK (negative acknowledge)
• SYN (synchronous idle)
• ETB (end of transmission block): Not the same as EOT
• CAN (cancel)
• EM (end of medium)
• SUB (substitute)
• ESC (escape)
• FS (file separator)
• GS (group separator)
• RS (record separator)

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 78

• US (unit separator)

As you see the ASCII table, the ASCII character set only includes values up to 127 decimal (7Fh).
However, when the IBM PC was developed, the video card contained one byte for each character in
the 80x25 character display, they could use the extra bit per character to invent 128 new characters,
for line-drawing and special symbols. The result, of course, was the extended ASCII character set for
the IBM PC. The chart below shows (most of) the characters that can be generated by the display in
the original IBM PC.

On the other hand, Microsoft Windows ® has a different notion about what the high-order (upper 128)
characters are, as shown in the table below.

We had enough discussion on ASCII code, and now let's go back to our original intention of sending a
hex value and displaying it on a monitor. As you probably knew or noticed from the lengthy
introduction of ASCII code in our discussion on serial communication, displaying a hex code not as
simple as the echoing code we programmed before. It's because any number we sent via the serial
cable to the computer is interpreted as an ASCII character.

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 79

For example, after reading an ADC register or IR command, assume that the result, say 32h, is stored
in W register. If we send the data by calling a transmission subroutine, what would you expect will
be displayed on the monitor? Do you expect to see as shown below, with 32?

Actually, what you see would be like this:

So you would erroneously guess that there is a bug in the program. But your code is perfect, only
your thinking and expectation have a bug: the ASCII code for 32h is the character '2'.

If the contents of W were FFh, the result would be more dramatic and vexing: there would be no
display at all. Check the extended ASCII code for Windows and IBM.

So we need a supplementary code to change a byte data in W in to two ASCII characters. In other
words, the byte data must be split into two nibbles (i.e., 4-bit data) and their ASCII hex equivalents
must be sent to the monitor for correct display of the result.

Let's discuss about splitting the byte data into two nibbles. Since we need temporary storage places,
for W content and two nibbles, let's allocate a few file registers: RESULT (for the hex result),TEMP
(for temporary space), NH (for higher nibble), and NL (for lower nibble).

Let's first store the original hex result (in W) by:

movwf RESULT ;[result]=W

Then, store the content again to another temporary location, by:
 movwf TEMP ;[TEMP]=NH|NL

Since the first nibble must be displayed first, we would get the higher nibble first from the result. To
do that we swap the content of TEMP:

 swapf TEMP,0 ;[TEMP]=W=NL|NH --->W
Now W has the swapped nibbles. Since NH is our interest for the first hex digit, we want to make the
NL part of W zero. The following does that job. If you AND a bit and 0, the result is 0 no matter what
value the bit may be.

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 80

 andlw 0x0F ;Mask off upper nibble so that W=0|NH

Now let's discuss how we convert a nibble with preceding 4 bits of zero into an ASCII equivalent. If
you check the ASCII table again, you may see some patterns for the 16 different hex digits, 0 - 9
and A – F.

hex 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASCII 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

From the pattern, we can see that a number between 0 – 9 can be easily converted to an ASCII
equivalent by being added with a hex number 30h. For the hex symbols, the addendum would be 37h,
instead (41h-0Ah=37h). Therefore, the only thing left is to know if the content of the nibble is a
number (0 – 9) or a symbol (A –F). To do that, let's examine the 16 possible hex numbers in a binary
format.

Hex Binary Equivalent
=== =================
 B3 B2 B1 B0
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1

It's very clear that if B3=0, the data is a number. For the symbols, B3 must be 1 and at least one bit
of B2 & B1 must be 1. This is a good pattern observation, since the numbers 8 and 9 has all zeros for
B2 & B1. So here is a pseudo-code for a hex to ASCII conversion subroutine.

1. Get a nibble for a hex digit
2. Check if B3=0. If it is add 30h to the nibble.
3. If not, then check if B2 & B1 are both zero. If they are zero, add 30h to the nibble.
4. If B2 & B1 has at least one 1, add 37h to the nibble.

So here goes the hex to ASCII subroutine:

; === hex to ascii conversion subroutine
;move a nibble to W before call this routine
;final result will be stored back to W
HTOA
 movwf ATEMP

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 81

;check 0-9 or A-F
 btfsc ATEMP, 0x03 ;if B3=0, it is a number in 0 - 7
 goto RECHK ;
THIRTY movlw 0x30 ;then, add 30h
 addwf ATEMP
 movf ATEMP,0 ;store the ASCII back to W
 return

RECHK andlw 0x06 ;ANDed with 00000110 to see B2 and B1
 btfsc STATUS,ZERO ;
 goto THIRTY ;if both are zero, it is a number 8 or 9
 movlw 0x37 ;if at least one is not zero, add 37h
 addwf ATEMP
 movf ATEMP,0 ;store the ASCII symbol back to W
 return

Now let's combine everything into a hex display code. Here again we assume that a result is stored in
W register. For a simple test of this code would be accomplished, without ADC or IR decoding, by
putting a hex number to W and see if the hex code in correctly displayed on the monitor.

;your routine for measurement or decoding
;here
;your result is now in W

movwf RESULT ;[result]=W
 movwf TEMP ;[TEMP]=NH|NL
;for the first hex digit
 swapf TEMP,0 ;[TEMP]=W=NL|NH --->W
 andlw 0x0F ;Mask off upper nibble so that W=0|NH
 call htoa ;ASCII conversion
 call Txpoll ;Transmission to monitor
;for the second hex digit
 movf RESULT, 0 ;W=[RESULT]=NH|NL
 andlw 0x0F ;By masking the upper nibble, we have only NL
 call htoa
 call Txpoll

;subroutine
HTOA
 movwf ATEMP
;check 0-9 or A-F
 btfsc ATEMP, 0x03 ;if B3=0, it is a number in 0 - 7
 goto RECHK ;
THIRTY movlw 0x30 ;then, add 30h
 addwf ATEMP
 movf ATEMP,0 ;store the ASCII back to W
 return

RECHK andlw 0x06 ;ANDed with 00000110 to see B2 and B1
 btfsc STATUS,ZERO ;
 goto THIRTY ;if both are zero, it is a number 8 or 9
 movlw 0x37 ;if at least one is not zero, add 37h
 addwf ATEMP
 movf ATEMP,0 ;store the ASCII symbol back to W
 return
;end of code
 END

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 82

5. Serial Communication without using the USART module

There are many occasions that we need more than one serial port and communication. Consider a
situation that we want to use one port for hex data display to a monitor or serial LCD, and another one
for serial communication with another PIC chip or any other serial communication device. However,
in 16F877, there is only one USART module. In other words, it supports only one serial
communication. Some PIC chips does not have even 1 USART.
This extended discussion on serial communication is to introduce a software implementation of an
asynchronous serial communication for 16F877. You can use this additional serial port for serial LCD
connection or other serial device. With this software serial communication scheme, you can use any
two I/O pins for TX and RX for the communication.

Reception
The coding for software serial communication should start with the review of RS-232 communication
protocol. Let's consider serial reception first. For reception, in 8N1 format, there would be 8 bits to
be tested for their values. For example, the character 'A' (ASCII code of 41h=01000001b) typed from
a keyboard would generate a start bit (Low) followed by 8-bit data stream. The data stream is the
nominal LSb first format (100000010). The 8-bit data is followed by a Stop bit (High). Then, the
communication terminates. So the reception should begin with the start bit monitoring, once the start
bit is detected, it regularly monitors the values for the next 8 bits. Then, after the high Stop bit, it
terminates the reception process. Since the data bit duration is dependent upon selected Baud rate, we
continue our discussion on reception with 19200 bps. With 19200 bps, the data bit duration is

5219200
000,000,1 ≈ [μs]. Let's call this 52 μs duration per bit as one "Baud cycle." Note that this

is valid only for 19200 bps setting. Then, we proceed the discussion in terms of the Baud cycle.

This is the way our software serial communication works:

1. Monitor the serial input (TX) port for the Start bit.
2. If Start bit is detected, wait for 1.25 Baud cycle for detecting the next bit. The reason for 1.25

Baud cycle delay is to have our monitoring timing at the middle of the next data to minimize
any error caused by drift. If there is no Start bit detected, go to 1 and keep monitoring.

3. After the first data bit (LSb) is detected, for the rest of the data bits, we wait only 1 Baud cycle
to read the values. It's apparent that after first reading, we can at the center of the next data bit
only after 1 Baud cycle.

4. After all 8 bits are read, for Stop bit detection, we wait only for 0.5 Baud cycle since the Stop
bit is the last one and we do not care if it lasts long or short.

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 83

The next job now is to come up with time delays for 1.25, 1.0, and 0.5 Baud cycles. Since we have
not studies on Timer block of 16F877, we keep using the instruction cycle based time dealy as we did
in Chapter 3 Instruction Sets. With 20MHz oscillation, each instruction takes 0.2 μs. Therefore, 1.25
Baud cycles correspond to 325 instruction cycles, 1.0 Baud cycle to 260 instruction cycles, and 0.5
Baud cycle to 130 instructions. As before, we are going to use decfsz instruction to have repetition
loop, the basic building block for instruction cycles is k*3, where K is the number of repetition to get
a desired time delay, or Baud cycle. Therefore, we can have the following relationships for k's and
corresponding Baud cycles:

Number of
Baud cycles

Time
in [μs]

Number of
Instructions needed

Formula Repetition Count K's

1.25 65 325 325=107*3 + 4 K125=107 (6Bh)
1.0 52 260 260=84*3 + 8 K100=84 (54h)
0.5 26 130 130=42*3 + 4 K050=42 (2Ah)

Then, we can make a subroutine to obtain three Baud cycle time delays. BC050, BC100, and BC125.

;===SUBROUTINES ====
BC050 movlw K050 ;The value 0x2A must be declared at top
 goto SAVE

BC100 movlw K100 ;The value 0x54 must be declared at top
 goto SAVE

BC125 movlw K125 ;The value 0x6B must be declared at top
 goto SAVE

SAVE movwf Kount
RPT decfsz Kount
 goto RPT
 return
; End of Subroutines

The following is an example code section of Start bit detection. When Start bit is not detected, it
waits for 0.5 Baud cycle, and then resume its detection of the bit:

WAITSTART
 btfss PORTD, RXPin :Is Start bit arrived?
 goto RECEPTION ;Yes, Start bit detected,

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 84

;go to reception mode

 call BC050 ;No. Then 0.5*BC second wait
 goto WAITSTART ;check for START bit again

Since we have desired time delays in terms of Baud cycles, we can now write a code to read the
serially transmitted data from the keyboard. But before, we proceed with code, there is one minor
thing to discuss. Since in serial communication we receives LSB first and MSB last, we have to
change the order of the bits we receive. The instruction rrf will do the job for us. rrf rotates the
bits in a file register to the right. In this rotation the carry bit (Carry bit is 0th bit of STATUS register,
STATUS<0>) is included. Specifically, first we clear the Carry bit, and rotate right one bit so that the
MSB in the file register becomes 0. Then, we read the first bit of the received data. If the bit is High,
the we set the MSB bit of the file register, otherwise, we keep the MSB. Then, we clear the Carry bit
again and rotate a bit to the right for the detection and determination of the second bit. The following
code section shows how it reads one bit of data and rotate to the right:

RECEPTION
 call BC125 ;After Start, wait for 1.25*(BC)
RXNEXT bcf STATUS, CARRY ;Clear the Carry Bit
 rrf Rreg ;rotate to the right. so Rreg<8>=0
 btfsc PORTD, RXPIN ;check the bit
 bsf Rreg, MSB ;1? Then set the MSB -->Rreg<8>=1
 call BC100 ;0? Do nothing --->Rreg<8>=0

;Wait for the next bit reading

This "clearing Carry bit, Rotate right a bit, read a received bit, and set/clear MSB, then rotate the file
register" continues for 8 times to read the 8-bit data stream.

After this we wait for a Stop bit to terminate the reception. When Stop bit is detected we move the
content of the data, stored in a file register, to W register to retransmit.

WAITSTOP
 btfss PORTD, RXPIN ;Stop bit received?
 goto WAITSTOP ;Not yet.
; Save the content to TXREG for an echo
 call BC100 ;Yes. Then give 1*BC wait
 movf Rreg,0 ;And move the content: Rreg -> W

Transmission: Next job is to send the received data back to the monitor of the computer. This part is
actually simpler than the reception part. Before sending the data, we send the Start bit by setting the
TX pin to low for one BC seconds:

 bcf PORTD, TXPin
;delay for 1*(BC) cycles
 call BC100

Then, we send the data, one bit at a time with the same 1 BC second delay, Txpin low when the bit is
0, and Txpin high if the bit is 1. Since we have to send LSB first, we have to do the similar rotation,
which includes the carry bit. The idea is to move the LSB of the file register where the data is stored
to Carry bit, and check the status of the bit. If the carry bit is 1, then we send 1 to Txpin, for 0, then 0
to Txpin, for 1 BC seconds. See below for a code section of one bit (LSB first) transmission:

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 85

bcf STATUS, CARRY ;Clear carry

 rrf Treg ;Now Carry = Treg<0>, LSB of the data
 btfsc STATUS,CARRY ;Is Carry=1?
 bsf PORTD, TXPin ;Then send High to TXpin
 btfss STATUS,CARRY ;IS Carry=0?
 bcf PORTD, TXPin ;Then send Low to Txpin
 call BC100 ;The pulse width of 1.0 Baud Cycle

We do the above process of 8 times to send all 8 bits of the data. After data transmission, we send
Stop bit to terminate the transmission session:

 bsf PORTD, TXPin
 call BC100 ;High for 1 BC for STOP bit

Hardware and Example Code
One hardware set-up we need is to add one more set of RX and TX lines. If you examine the
minimum hardware we implemented in Chapter 4. Since MAX232 supports two set of serial
communication level conversions, and only one set was used for serial communication using USART,
we can use the other set for serial communication with software. As you can see from the schematic
diagram below, the RX and TX ports for software implementation of serial communication are
connected to RD3 and RD2 ports, respectively. As said before, any port pins can be connected for
this software based serial communication.

 Fig. 23 Software based Serial Communication

Now we are ready to have an example code for receiving a byte from the keyboard and echoing it on

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 86

the monitor. So the code functions as the echoing program we studied before, but with USART
module. Read the comment lines for detailed explanation of the code.

;echo-v2.asm
;This program is asynchronous communication using software method
;In other words, using this, any two pins of F877 can be used
;for RX and TX pins, respectively.
;
;This program reads(receives) RS-232 transferred data and
;echo it by transmitting the data
;
;F = 20 MHz
;B = Baud Rate
;For B=19200, one Baud cycle (BC) is about 52uS
;
;
;RECEIVE MODE
;RX pin is polled approximately every 0.5*(BC) seconds, i.e., 26uSec for 19200
;to detect the START bit (which is LOW when detected)
;If a START bit is detected, then the first data bit is checked for after
1.25*(BC) seconds
;From then on, the other data bits are checked every (BC) seconds.
;The data received is assumed to be transmitted LSB first (Normal mode)
;
;TRANSMIT MODE
;First START bit is sent by setting the TX pin to LOW for (BC) seconds
;And, from then on, the TX Pin is Set/Cleared corresponding to the data bit
;every (BC) seconds.
;
;
; By the way, 1 instruction cycle = f (CLK)/4
; In 20 MHZ clock case: 1 instruction cycle takes (1/20)*4=0.2 uS
;
;Terminal set up: 8N1 19200
;
;
; Number of instruction cyles for 1(BC) = (52/0.2)=260 Cycles
; 260 =84*3 + 8 ====>K100 = 84 (0x54)
; Number of instruction cyles for 0.5*(BC) = (0.5)(52/0.2)=130
; 130 = 42*3 + 4 ====>K050 = 42 (0x2A)
; Number of instruction cyles for 1.25*(BC) = (1.25)(52/0.2)=325
; 325 = 107*3 + 4 ====>K125 = 107 (0x6B)
;
;Asynchronous mode
;
;TX Pin = RD2
;RX Pin = RD3
;
 list P = 16F877

STATUS EQU 0x03
CARRY EQU 0x00 ;Carry bit STATUS<0>
TRISD EQU 0x88
PORTD EQU 0x08
K100 EQU 0x54 ;for 1BC delay
K050 EQU 0x2A ;for 0.5 BC delay
K125 EQU 0x6B ;for 1.25 BC delay
TXPIN EQU 0x02 ;RD2
RXPIN EQU 0x03 ;RD3
MSB EQU 0x07

;

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication 87

;RAM for RX/TX Buffer
 CBLOCK 0x20
 KEYIN ;keyin from a keyboard
 Rreg ;Temporary register for reception
 Treg ;Temporary register for transmission
 Bitcount ;data bit count
 Kount ;Delay count (number of instr cycles for delay)
 ENDC

;===
 org 0x0000 ;line 1
 goto START ;line 2 ($0000)

;==
 org 0x05
START

 banksel TRISD
; Port setting (1 for input and 0 for output)
;RD2 - TXPin (out) cleared
;RD3 - RXPin (in) set
; 0000 1000

 movlw 0x08
 movwf TRISD

TALK ;Start of the session
 banksel Rreg
 clrf Treg ;clear the TX and RX buffers (registers)
 clrf Rreg

; Check for START bit
WAITSTART
 btfss PORTD, RXPin
 goto RECEPTION
 call BC050 ;0.5*BC cycle wait
 ;Then, check for START bit again
 goto WAITSTART
;
;
;RX for Data bits begins here
RECEPTION
 call BC125 ;Delay for 1.25*(BC) cycles
 movlw 0x08
 movwf Bitcount ;8 data bits
RXNEXT

bcf STATUS, CARRY ;Clear the Carry Bit
 rrf Rreg ;rotate to the right
 btfsc PORTD, RXPIN ;check the bit
 bsf Rreg, MSB ;1? Then set the MSB
 call BC100
 decfsz Bitcount ;Repeat 8 times
 goto RXNEXT
;Check for STOP Bit
WAITSTOP
 btfss PORTD, RXPIN
 goto WAITSTOP
; Save the content to Treg for an echo
 call BC100
 movf Rreg,0 ;Rreg -> W
 movwf Treg ;W --> Treg For transmit back

;TX ROUTINE

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

Chapter 5. Serial Communication

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

88

 movlw 0x08
 movwf Bitcount ;8 data bits
;send a START bit
 bcf PORTD, TXPin
;delay for 1*(BC) seconds
 call BC100
TXNEXT

bcf STATUS, CARRY
 rrf Treg ;LSB first mode (normal)
 btfsc STATUS,CARRY
 bsf PORTD, TXPin
 btfss STATUS,CARRY
 bcf PORTD, TXPin
 call BC100
 decfsz Bitcount ;Repeat 8 times
 goto TXNEXT
;send STOP bit
 bsf PORTD, TXPin
 call BC100
;wait until the end of STOP bit
 goto TALK ;Get the Keyin again

;
;===SUBROUTINES ====
BC050
 movlw K050 ;0x2A
 goto SAVE
BC100
 movlw K100 ;0x54
 goto SAVE

BC125
 movlw K125 ;0x6B
 goto SAVE

SAVE movwf Kount
RPT decfsz Kount
 goto RPT
 return

;End of Subroutine ===

;End of code
 END

Of the example code above, in many applications, only the part for transmission of serial data may be
needed for displaying results and others.

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

