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Chapter 3:  Instruction Sets 
 
Instruction sets could be said of programmer’s interface to hardware. The CPU of the PIC is 
responsible for using the instructions (or program code) stored in the program memory to 
execute the functions and operations the instructions intend to do.  The instructions are stored in 
the program memory in a format of machine code, or hex code.  Assembly language is the 
instruction mnemonics for the machine codes.  Assembler generates machine codes from 
Assembly code. 
 
1. PIC16F877 Instruction 
Each PIC16F877 instruction is a 14-bit word divided into an OPCODE, which specifies the 
instruction type, and one or more operands which further specify the operation of the instruction.  
There are three addressing modes in the 16F877 instruction: byte-oriented, bit-oriented, and 
literal and control operations.  Byte-oriented instructions operate with a whole-byte data, like 
moving a byte of data in W register to a file register. Bit-oriented instructions are to check or 
change only a bit of a byte data.  Literal operations involve with direct numerical value of 
loading or logical operation with W register.  The literal operation is usually called 'an 
immediate addressing mode' in the more traditional microprocessor instructions. 
 
Byte-oriented instructions 
For byte-oriented instructions, 'f' represents a file register designator and 'd' represents a 
destination designator.  The file register designator is used to specify which one of the file 
registers is to be used by the instruction. The destination designator specifies where the result of 
the operation is to be placed.  If 'd' is '0', the result is placed in the W register. If 'd' is '1', the 
result is placed in the file register specified in the instruction.  If we do not specify the 
destination, it is considered  '1' (default value). 
 
In the machine code level (in 14-bit word configuration), byte-oriented instructions are 
configured with 6 bits of Opcode, 1 bit for destination designator, followed by 7 bit file register 
address. 

 
The table below lists the instructions words of the byte-oriented operation.  As we see at the last 
column of the table, the 6-bit Opcode portion is already given with a specific bit formation for 
each instruction mnemonic.   The remaining 8 bits are determined by the destination of the 
operation and the file register the operation accesses to do the operation. The column with 'T' 
indicate the number instruction cycles needed to do the operation of each instruction.   
 

Table. Byte-oriented operation of 16F877 instructions. 
Mnemonic Description T Flag Instruction word

(OPCODE+operand)
addwf f,d add W and f 1 C, Z 00 0111 dfff ffff
andwf f,d and W with f 1 Z 00 0101 dfff ffff
clrf f clear f (i.e., f=0) 1 Z 00 0001 1fff ffff
clrw clear W 1 Z 00 0001 0xxx xxxx
comf f,d complement f 1 Z 00 1001 dfff ffff
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decf f,d decrease f by 1 1 Z 00 0011 dfff ffff
decfsz f,d decrease f by 1, skip if f=0 1(2) 00 1011 dfff ffff
incf f,d increase f by 1 1 Z 00 1010 dfff ffff
incfsz f,d increase f by 1, skip if f=0 1(2) 00 1111 dfff ffff
iorwf f,d OR W with f 1 Z 00 0100 dfff ffff
movf f,d move f 1 Z 00 1000 dfff ffff
movwf f move W to f 1 00 0000 1fff ffff
nop no operation 1 00 0000 0xx0 0000
rlf f,d rotate left f through carry 1 C 00 1101 dfff ffff
rrf f,d rotate right f through carry 1 C 00 1100 dfff ffff
subwf f,d subtract W from f (i.e., f-W) 1 C, Z 00 0010 dfff ffff
swapf f,d swap nibbles in f 1 00 1110 dfff ffff
xorwf f,d XOR W with f 1 Z 00 0110 dfff ffff

 
Let's have an example of machine code generation from an instruction.   Let's consider then the 
following instruction: 
movwf PORTD, which moves a content in W register to PORTD register.
 
Since the OPCODE for movwf is set 000000 (see the byte-oriented operation table above), the 
destination is the default value of '1', and the file register address of PORTD is 0x08 (from the 
file register table in page 7), the corresponding machine code is 0088h: 

 
 
If the file register is changed to PORTB, since the file register address of PORTB is 0x06, the 
corresponding machine code would be: 0086h. 
 
Bit-oriented instructions 
For bit-oriented instructions, 'b' represents a bit field designator which selects the number of the 
bit affected by the operation, while 'f' represents the file register in which the bit is located.  In 
the machine code level (in 14-bit word configuration), bit-oriented instructions are configured 
with 4 bits of Opcode, 3 bits for the bit number (between 000b and 111b ), followed by 7 bit file 
register address. 
 

 
 
The table below lists the instructions words of the bit-oriented operations.  As before, at the last 
column of the table, the 4-bit Opcode portion is already given with a specific bit formation for 
each instruction mnemonic.   The remaining 10 bits are determined by the 3-bit bit number and 
the 7-bit file register the operation accesses to do the operation.  
 

Table.  Bit-Oriented Instruction for 16F877 
Mnemonic Description T Flag Instruction word

(OPCODE+operand)
bcf f,b clear f<b> bit (i.e., f<b)=0) 1 01 00bb bfff ffff
bsf f,b set f<b> bit (i.e., f<b)=1) 1 01 01bb bfff ffff
btfsc f,b test f<b> bit, skip if f<b>=0 1(2) 01 10bb bfff ffff
btfss f,b test f<b> bit, skip if f<b>=1 1(2) 01 11bb bfff ffff
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Let's have an example of machine code generation from a bit-oriented instruction.   Let's 
consider the following instruction: 
 bsf PORTD, 0x04,  which sets (or make '1') the fourth bit of the file register PORTD. 
 
The Opcoe for bsf is already configured as 0101.  The 3-bit bit number, which is 4 in decimal, is 
100b, fill the next 3 bits of the instruction word.   Lastly, the file register address for PORTD, 
which is 0x08 (or 0001000b) fills the last 7 bits of the word, to make the machine code 1608h. 
 

 
 
 
Literal and Control Operations 
For literal and control operations, 'k' represents an 8 or 9-bit constant or literal value.   In the 
machine code level in 14-bit word configuration, they are configured with 6 bits of Opcode 
followed by 8 bit constant (or literal). 
 

 
 
The table below lists the instructions words of the literal and control operations.  As before, at 
the last column of the table, but unlike the previous two operations, the number of bits assigned 
to Opcode is fixed: some has 5, another 6, and others 3.   The x marked bits in the Opcode are 
don't care values (1 or 0).   In most cases, the Opcode is followed by a 8 bit literal.   
 

Table. Literal and Control Operations of 16F877 Instructions 
Mnemonic Description T Flag Instruction word

(OPCODE+operand)
addlw k add k and W 1 C, Z 11 111x kkkk kkkk
andlw k and k and W 1 Z 11 1001 kkkk kkkk
call k call subroutine at address k 2 10 0kkk kkkk kkkk
clrwdt clear watchdog timer 1 00 0000 0110 0100
goto k go to address k 2 10 1kkk kkkk kkkk
iorlw k OR k with W 1 Z 11 1000 kkkk kkkk
movlw k move k to W (i.e., W=k) 1 11 00xx kkkk kkkk
retfie return from interrupt 2 00 0000 0000 1001
retlw k return with k in W 2 11 01xx kkkk kkkk
return return from subroutine 2 00 0000 0000 1000
sleep go into standby mode 1 00 0000 0110 0011
sublw k subtract W from k (i.e.,k-W) 1 C, Z 11 110x kkkk kkkk
xorlw k XOR k with W 1 Z 11 1010 kkkk kkkk

 
Let's have a simple example of machine code generation from a bit-oriented instruction.   Let's 
consider the following instruction: 
 movlw 0x02,  which loads a constant value of 2h to W register. 
 
From the table, the  Opcode for movlw is 110000, and the literal value component must be 
00000010 (2h), which makes the corresponding machine code as 3002h. 
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2. Instruction Cycle and Execution Time 
The above three tables showed the Mnemonics of 16F877 instructions and machine code 
formation.  In addition, they indicated, under the 'T' column, the number of instruction cycle of 
the instructions.  And we see that all instructions are executed within one single instruction 
cycle, unless a conditional test is true or the program counter is changed as a result of an 
instruction, in which the execution takes two instruction cycles.  
 
By the way, one instruction cycle consists of four oscillator periods. Thus, for an oscillator 
frequency of 20 MHz, the normal instruction execution time is 0.2 µs (1µs = one millionth 
second). If a conditional test is true or the program counter is changed as a result of an 
instruction, the instruction execution time is 0.4 µs. 

 
 
 
3. Coding Practice - Tricks and Tips  
Let's have some practice of instruction sets.  As we see that there are not many instructions, 
especially, arithmetic operations.  So we must build some skills and tricks to combine the 
instructions for a desired operation.  Here we will devise some tricks and tips for frequently met 
cases in embedded computing and PIC microcontroller interface for monitoring and control. 
 
Turn on/off an LED 
An LED is connected to a pin at one, say, PORTB<0>, and to a ground at the other.   
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Fig 8. An LED connection to PORTB<0> of 16F877 
 

After assigning PORTB<0> as output port by loading a proper value to TRISB register, we set or 
reset the single bit of PORTB<0> to turn on or off the LED.   We use a bit-oriented file register 
operation as below for turning on/off: 
 
bsf PORTB, 0x00 ;LED on
bcf PORTB, 0x00 ;LED off. 
 
A small problem with the above two lines to turn on and off an LED is that you do not see it 
blink at all: the time between on and off is too short, 0.2µs precisely, to be recognized by eyes.  
To make it blink, we have to have some time delay between the lines.  Making time delay, 
without using the Timer of 16F877, is discussed in this section.  Making time delay using the 
built-in Timer is a subject of a separate chapter. 
 
 
Variable Declaration 
When we program in C, declaring and defining a variable is not even an issue.  We declare a 
variable with a name and size like,  
 

byte temp
int x

However, in PIC programming environment, the variable must physically, overtly, occupy the 
data memory (RAM) area.  To declare variables whose values can be changed freely, we use 
CBLOCK and ENDC pair of MPLAB (which is the integrated Assembly programming, debugging, 
and simulation environment, and is a subject of another separate chapter.) directive.   So to 
declare the above two variables as in C, we have to have the following lines before any line of 
PIC assembly code.   Remember that 16F877 is an 8-bit microcontroller and any variable 
declared will be treated as an 8-bit file register, specifically general file register.  The following 
program declares the two variables at the general purpose register area in bank 0. 
 
 CBLOCK 0x20 ;the starting address of the general purpose

;register block is 20h
temp ;temp is a file register at address 20h
x ;x is a file register defined at address 21h

ENDC ;end of a file register block
 
In the above variable declaration and its address in the RAM, we see that the block starts at 20h.  
You may have a question asking why 20h?  Why not 10h?  There is a good reason why the above 
example block starts from 20h:  If you go again to the filer register map in page 7, you can see 
that there are four blocks (one block a bank) in four blanks of general purpose register, which is 
available for programmer.  In bank 0, the block is assigned from address 20h to 7Fh.  In bank 1, 
the user block is between A0h and EFh (not that it is not to FFh since F0h - FFh is overlapped 
with 70h-7Fh of the bank 1 block). In banks 2 and 3, the user block is much wider: 110h - 170h 
for bank2, and 190h - 1F0h for bank 3. 
 
If your special purpose registers are, for example, in bank 1, you naturally use a block in bank 1 
to declare your variables since accessing registers in the same bank is much easier in code 



Chapter 3. Instruction Sets 

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006 
 

19

writing: it does not require to move to different banks.  However, if your code accesses I/O port 
which are in bank 0 (except that the port's direction designation registers in bank 2, which you 
can work out before accessing the port), there is no reason not to have your variable declaration 
block in bank 0. 
 
Content Check 
Here the question is how we check or compare a byte content stored in W register or a file 
register.  This seemingly easy question in a high level language environment like C is legitimate 
since there is no such instruction of IF...AND IF...END structure in PIC Assembly language.  
Therefore in microcomputer coding, we always look a pattern of the data bits, instead of the 
value of them, in a file register.  Let's consider an example, which we treat thoroughly in a later 
chapter, of simple remote control application.  Assume that an Infrared (IR) receiver is connected 
to a pin of a port and that it reads transmitted IR command sent from an IR remote controller, 
like our TV or VCR remote.   
 

Fig 9. Remote Controller and an IR receiver pair 
 
The command code part of the data from a Sony remote controller is tabulated in Table.   Let's 
further simplify our situation by assuming that a byte information sent from the remote is, after a 
decoding process which is actually the main subject when we discuss on the IR remote control 
application, stored to W register.   Now we want to check the IR command by examining IR 
command.   
 

Table.  IR command code for a Sony Remote Controller 
IR command code Button pressed from a remote
0 0 0 0 0 0 0 0 '1'
0 0 0 0 0 0 0 1 '2'
0 0 0 0 0 0 1 0 '3'
0 0 0 0 0 0 1 1 '4'
0 0 0 0 0 1 0 0 '5'
0 0 0 0 0 1 0 1 '6'
0 0 0 0 0 1 1 0 '7'
0 0 0 0 0 1 1 1 '8'
0 0 0 0 1 0 0 0 '9'
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0 0 0 0 1 0 0 1 '0'
 
Let's further simplify our example by assuming that a byte information sent from the remote is, 
after a decoding process which is actually the main subject when we discuss on the IR remote 
control application, stored to W register.   Now we want to check the IR command by examining 
W register.  
 
So our job is to check the content of W register to find what command the remote controller sent 
to the IR receiver.    Since W register should be checked at least 10 times to find the pressed 
button, and the checking may alter the original content, we have to save and store the original 
content to a memory location (RAM area).  As we discussed above, let's define a general purpose 
register COMreg at bank 0 by declaring the register in the bank 0: 
 
 CBLOCK 0x20

COMreg
ENDC

 
Now let's focus on the content check.  First we move W to COMreg for a keepsake.  And we 
restore to W every time we check the content.  Let's assume that W now holds the original 
content.   The content could be any combination of 8 bits out of 28=256 possibilities.   And the 
number of our patterns of interest are only 10.   If you check every bit to match the 10 patterns, 
you would have to check 256 checks for all 8 bits.  This approach is not good.  Then, what is a 
simpler one? 
 
Let's explore andlw k instruction.   The code andlw 0xFF keeps the content of W intact by the 
logical AND operation between W and the constant value FFh, since whatever byte data you 
have the AND operation with 1s will keep 1 as 1 and 0 as 0.  On the other hand, andlw 0x00 
will clear W, and set the Z (zero flag) of STATUS register, since any bit AND-ed with 0 will 
cleared.  The Z flag is the second bit of the STATUS register.   Therefore, if the second bit of 
STATUS register is 1 (which says the result is zero) after the instruction  andlw 0xFF, then we 
know that the content of W is 00h or 00000000b.  
 
How about other numbers?  And, andlw 0xFE or andlw B'11111110'  would keep all the bits 
except the LSB (least significant bit), i.e., bit 0 of W.  Therefore, if the result (by the Z flag) of 
andlw 0xFE is zero, then we know that W is either 00h=00000000b or 01h=00000001b.  But the 
pattern of 00h=00000000b is already checked above, we can assume that W is 01h=00000001h. 
 
Further, if the result of andlw 0xFC or andlw B'11111100' is zero, then we can see that the 
content of W is 03h=00000011b.     
 
Now we can write a sample code to decode the remote. 
 
;sample code for IR command decoding
;It is assumed that 1 byte IR information is stored in COMreg register

list P = 16F877 ;Target processor = 16F877
Z EQU 0x02 ;Z flag, STATUS<2>

CBLOCK 0x20 ;declaration of COMreg register in bank 0
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COMreg
ENDC

clrf STATUS ;cleared the STATUS register
;mainly to clear Z flag

movf COMReg,0 ;COMreg holds the IR command byte
;and we bring the content to W

andlw B'11111111'
btfss STATUS, Z ;W=0? (button 1)
goto next1 ;no. Check other possibilities
goto One ;Yes. Button 1 is pressed.

next1 movf COMreg,0 ; Retrieve the original byte from file register
andlw B'11111110'
btfss STATUS,Z ;W=1? (button 2)
goto next2 ;No
goto Two ;Yes. Button 2 is pressed.

next2 movf COMreg,0
andlw B'11111101'
btfss STATUS,Z ;W=2? (button 3)
goto next3
goto Three ;Yes. Button 3 is pressed

next3 movf COMreg, 0
andlw B'11111100' ;
btfss STATUS, ZERO ;W=3? (button 4)
goto next4
goto Four

next4 movf COMreg,0
 
 
The code continues on to find other buttons.   The instruction btfss is to "bit test of a file 
register, and skip if the bit is set."  In other words, in the above code, if the Z flag is 1 ("set"), 
skip the next line and go to the second line after the instruction.  If the Z flag is 0 ("reset"), just 
go to the immediate next line after the instruction.  We will discuss more on btfss in the next 
example of coding.   Also remember from the code that there is only one instruction to move a 
data from a file register to W register: movf with direction 0 as in  
 
movf COMreg,0
 
 
Monitoring Digital Input and Action on It 
This case is when we receive a sensor input and act on the input.   Usually the sensor is a digital 
device which generates a digital output, say +5V (High) for normal situation and 0V (Low) 
output for abnormal situation, or vice versa.   In practice, let's consider a motion detection and 
warning system.  We use a PIR (pyro-IR)  motion detector to detect a motion and, once a motion 
is detected, we will alarm by turning on a buzzer.  The motion detector's output is normal High 
(which means it generates High (+5V) signal when motion is not detected, and 0V when motion 
is detected).   Alarming is done by turn on a relay which in turn close a circuit for a buzzer.   In 
other words, +5V output for a relay will turn on the buzzer.  Assume that, as illustrated, a PIR 
motion detector is connected to PORTB<1> and a relay to turn on a buzzer is connected to 
PORTD<2>.    Note that the PIR motion detector has 3 pins for +5V and Ground connections 
and for the output signal. 
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There must be two main operations: keep monitoring the PORTB<1> if it goes to zero, and send 
High output to PORTD<2> in such case, otherwise Low output.   The pseudo-code for this 
operation looks that:  
  
1. Select PORTB<1> as input by setting TRISB<1>. 
2. Select PORTD<2> as output by clearing TRISD<2>. 
3. Clear PORTD<2> to turn off the relay (and the buzzer) 
4. Check PORTB<1> 
5. If PORTB<1>=1 then go to 3.  If PORTB<1>=0 go to 6 
6. Set PORTD<2> to turn on the relay (and buzzer) 
7. Go to 4 
 
 

 
Fig. 10 Illustration of a motion detector and a buzzer (with relay) 

 
Here our interest is how we check PORTB<1> and make decision based on the value of the bit.  
From the bit-oriented instruction, btfss f,b and btfsc f,b are very helpful in bit test and 
decision making, where b is for a bit number. 
 
Instruction btfss f, b tests (after reading) the bit b of file register f, i.e., f<b>, and if f<b>=1 
('set"), then skip the line of code following the instruction.  If f<b>=0 ("clear"), then the next line 
below the instruction is executed.     Instruction btfsc f,b is the opposite instruction of btfss
f, b . 
 
So let's have another sample code utilized with btfss f,b or btfsc f,b.  In the code below, 
especially the top portion, we can see that EQU can be used to declare the addresses of file 
registers, as we declare the address of PORTB is 0x06 and that of TRISB is 0x86 as they are 
mapped in the filer register map shown in page 7. 
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PORTB EQU 0x06
TRISB EQU 0x86
 
Also, we use EQU to equate a variable (in this case, the variable does not occupy a physical space 
as used in the CBLOCK and CEND) to a numerical value.  In other words, in the code, P1, P0, PIR, 
and BUZ are file registers nor a physically occupying variable: they just replace numbers 6, 5, 1, 
and 2, respectively, in the code.  Once this EQU is done, PIR is the same as number 1, for 
example.  Therefore,  the instruction 
 
bsf STATUS, P0
 
is the same as 
 
bsf STATUS, 0x05.

The sample code follows. 
 
 
;sample code for motion detection and alarm
;

list P = 16F877 ;Target processor = 16F877
STATUS EQU 0x03 ;SFR declaration
PORTB EQU 0x06
TRISB EQU 0x86
PORTD EQU 0x08
TRISD EQU 0x86
P1 EQU 0x06 ;STATUS<6>
P0 EQU 0x05 ;STATUS<5> for bank selection
PIR EQU 0x01 ;motion detector is connected to bit 1 of PORTB
BUZ EQU 0x02 ;buzzer is (via relay) connected to bit 2 of PORTD

bsf STATUS, P0 ;bank 1

bsf TRISB, PIR ;PORTB<1> as input
;all other bits are don't care
;and use initial value

bcf TRISD, BUZ ;PORTD<2> as output

bcf STATUS, P0 ;bank 0

bcf PORTD, BUZ ;Alarm off

;Monitoring PIR
;Motion detection is indicated
;by PORTB<1>=0

AGAIN btfsc PORTB, PIR ;Is PORTB<1>=0?
goto AGAIN ; No, then keep monitoring
bsf PORTD, BUZ ;Yes, then buzz
goto AGAIN ;go and monitor again

  end
 
 
Loops and Repetition 
In many cases, including arithmetic operation, we need a loop or repetition control flow.  Since 
we do not have do loop as in FORTRAN or for loop as in C, we have to devise a way to do a 
loop operation.   Consider an LED blinking routine.  We want to blink and LED (on followed by 
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off) for 10 times and then turn off the LED completely.  Of course, there must be some time 
delay to keep an LED on for, say, 100 ms.   Apparently we need a time delay subroutine.  But in 
this discussion, let's assume that there is a 100 ms time delay subroutine already built.  Details of 
time delay will be discussed in the next sub-section.   Now the main question is how to count (or 
repeat) the On-delay-off-delay sequence and stop this sequence after ten times. 
 
The answer is around the instruction decfsz f, which is to "decrease the content of a file 
register by 1, and then check the content to make a decision: skip the next line in code if the 
content after the decrement is reduced to zero, but if the content is not zero, execute the 
immediate next line after the instruction".  So if we put number 10d (or 0Ah) to a file register, 
then by using the instruction, we can count from 10 to 1 or ten times.  Note that this instruction is 
performed only on a content stored in a file register: you cannot perform this on a content in W 
register.  Also, you have to remember that there is no direct load instruction to put a constant 
number to a file register.  This means you have to load a number, say 0Ah, to W register and 
then move the content from W to a file register. 
 
So here comes a pseudo-code for blinking an LED 10 times. 
1. Load numeral 10 to W register 
2. Move W to a file register (so we have to declare a GPR before the start line of code) 
3. Turn on the LED for 100ms 
4. Turn off the LED for 100ms 
5. decfsz the file register 
6. If the content of the file register is zero, then stop 
7. If the content of the file register is not zero, go to 3. 
 
Let's convert the pseudo-code to an actual PIC assembly code.  As explained before, in addition 
to the three file register address declaration, using EQU, three variables (P1, P0, and LED) are 
replacing the numbers 6, 5, and 1, respectively.  Unlike the above three variables which do not 
occupy a RAM space but only replace numbers, the variable TEMP occupies a RAM space at the 
address 20h. 
 
;sample code for a blinking LED 10 times
;

list P = 16F877 ;Target processor = 16F877
STATUS EQU 0x03 ;SFR declaration
PORTB EQU 0x06
TRISB EQU 0x86
P1 EQU 0x06 ;STATUS<6>
P0 EQU 0x05 ;STATUS<5> for bank selection
LED EQU 0x01 ;LED is connected pin 1 of PORTB

CBLOCK 0x20
TEMP ;declaration of a GPR at bank 0

ENDC

bcf STATUS, P1
bsf STATUS, P0 ;bank 1
bcf TRISB, LED ;PORTB<1> as output
bcf STATUS, P0 ;bank 0
movlw 0x0A ;load 10 to W
movwf TEMP ;TEMP = 10
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AGAIN bsf PORTB, LED ;Turn on LED
call delay100ms ;Keep on for 100ms
bcf PORTB, LED ;Turn off LED
call delay100ms ;Keep off for 100ms
decfsz TEMP ;Decrease and Test TEMP
goto AGAIN ;if not zero, continue
end ;if zero, end

 
In the code above, we see that call is used to call a subroutine.  Also, the subroutine name is 
immediately follow the call instruction.  Subroutines and subroutine call is discussed next. 
 
Time delay 
Now let's deal with the unfinished business of time delay.  Getting time delay can be done two 
ways: one is to use the timer module of the PIC chip (timer 0, timer 1, and timer 2) and the other 
is to utilize the number of instruction cycles needed for a loop operation. 
 
As we discussed before, most instruction of PIC takes one instruction cycle (T), and one 
instruction cycle, with 20 MHZ oscillations, has duration of 0.2µs.   So by having five nop ("No 
Operation") instructions, for example, we could get 1 µs time delay: 
 

bsf PORTB, LED ;LED on (it is assumed that LED is EQUed above to
; indicate a number)

nop ;it takes 0.2us to execute this line
nop ;now total 0.4us
nop ;0.6us
nop ;0.8us
nop ;1.0 us (LED is on for 1us)
bcf PORTB, LED ;LED off
nop ;it takes 0.2us to execute this line
nop ;now total 0.4us
nop ;0.6us
nop ;0.8us
nop ;1.0 us (LED is off for 1us)

 
If we want to have 100µs, we would have to have 500 lines of nop, and it definitely is not a good 
way of writing code.  Let's apply that decfsz again here.  From the instruction table, we see that 
the instruction cycle for decfsz is either 1 or 2.   According to the PIC manual, it takes 2 cycles 
when the test condition is satisfied or when PC (program counter) is modified.  In other words, 
when skip happens it adds one more cycle to the usual 1 cycle instruction.  Therefore, the 
following code, when TEMP=1, would take 4 cycles (decfsz(1 cycle), skip(1 cycle) since the 
content is not zero, and goto B(2 cycles)).    
 
A decfsz TEMP ;Decrease and Test TEMP

goto A
goto B  

 
With TEMP=3, it would take (we are following the instruction order), 
     ;TEMP=3 

 decfsz ;1 cycle and  TEMP=2 
             goto A ;2 cycles 
  decfsz ;1 cycles and  TEMP=1 
  goto A ;2 cycles 
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  decfsz ;1 cycle and TEMP=0 
    ; 1 cycle for skipping the next line (since TEMP=0) 
  goto B ;2 cycles 
      
therefore, total instruction cycles of 10.   
 
As you see above, the pair decfsz and goto makes 3 instruction cycles.  This pair can be used 
as a basic time delay routine block.  Now we can expand this to make the 100µs delay 
subroutine.    First, we know that 100µs delay needs 500 instruction cycles: 
100[µs]=0.2[µs/cycle]*500[cycle]. 
 
Let's consider the following block of instructions.  The number of instruction cycles is included 
in the comment spaces.  From here, we have to determine what value the file register 
Kount100us should contain to achieve 500 instruction cycles.  In other words, for the first line of 
the code below, we have to decide what number we have to load to W register. 

movwf Kount100us ;(1)
R100us decfsz Kount100us ;(1)

goto R100us ;(2) if condition is not met
;(1) skip if condition is met

return ;(2) end of subroutine

The number of instruction cycles can be formulated as below:  
Ttotal = 1(movwf)+3(decfsz & goto)* (Content of Kount100us register) + 1 (skip) +2 
(return) = 500. 
 
Or we can rearrange the above formula into: 
500 = 3* [Kount100us] + 4 
 
If we add one more line at the very top of the code for loading a literal to W, movlw, then the 
final formula for the register content to make 100 µs delay would be: 
500 = 3* [Kount100us] + 5 
 
From the formula, we find the value for Kount100us as 165d or 0xA5.  Now we are ready to 
write a 100us delay subroutine.  Note that the subroutine name is the starting label of the 
subroutine. 
 
;Subroutine Delay100us ==============
;Need 500 instruction cycles since 1 instruction cycles takes 0.2 us
;The formula for 500 instruction cycles:
; 500 =3*165 + 5
; this number (165) must be stored into a file register

delay100us movlw 0xA5 ;165 in decimal
movwf Kount100us

R100us decfsz Kount100us
goto R100us
return

;end of subroutine =================
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Now we can make longer delays from the 100µs delay subroutine.  For 1ms delay, all we have to 
do is to call the 100µs delay subroutine 10 times.   So a 1ms delay subroutine would look like 
this: 
 
;Subroutine Delay1ms ==============
;Need to call delay100us for 10 times
;
delay1ms movlw 0x0A ;10 in decimal

movwf Kount1ms
R1ms call delay100us

decfsz Kount1ms
goto R1ms
return

;end of subroutine =================

Actually, the above subroutine takes more than 1ms time delay.  Do you see why?   Let's count 
the exact number of instruction cycles.    
 
T = 1 (movlw) + 1 (movwf) + 10*{500(call delay100us) +1 (decfsz)+2(goto)} + 
1(decfsz)+1(skip)+2(return) = 10*{503}+6=5036 [cycles] --->1.007 [ms]. 
 
In most situations, this small error could easily be accepted.    
 
If you can accept this minor errors, you can easily build a subroutine for 100ms delay by calling 
100 times the 1ms delay subroutine.  Other time delay can be further developed using these time 
delay subroutines.  The curious can measure the actual time delay by measuring the pulse 
duration of the LED port (without LED of course) by digital storage oscilloscope. 
 


	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors.  The basic fetch-execute sequence is designed to support a large number of complex instructions.  And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window




	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16



