
X86 Assembly Language
Programming: Part 5

Procedures

EECE416 uC

Charles Kim
Howard University

www.mwftr.com

ckim
Typewritten Text
/416F15.html

Procedures with Value Parameters
• Main program call(s) a procedure
• Main Program transfers the parameter values
• Procedure receives (retrieves) them
• Procedure may do a task or it may return a value

– value-returning procedure is sometimes called a
function

Procedure Calling and Stack
• 3 concepts:

– How to transfer control from a calling [main]
program to a procedure and back

– How to pass parameter values to a procedure
and results back from the procedure

– How to write procedure code that is
independent of the calling program.

• Hardware stack is used to accomplish
each of the above jobs.

80x86 Stack
• Hardware Stack

– ESP holds the address of the “first byte
above (or higher) ” of the stack pointer

– Most access is indirect, through the stack
point register ESP

• Operating system initializes ESP to point to byte
above stack pointer

• As program executes, it points to the last item
pushed on the stack

– “Top” of stack is at the highest address
– Stack grows toward lower address

How Call/Ret Works
• call

– The address of the instruction EIP following the call is pushed
on the stack (so ESP has grown by 4 --- ESP address is
lowered by 4) [Equivalent to Push EIP]

– The instruction pointer register EIP is loaded with the address of
the first instruction in the procedure

• ret
– The doubleword on the top of the stack is popped into the

instruction pointer register EIP (so ESP has decreased by 4 ----
ESP address is increased by 4) [Equivalent to Pop EIP]

– this is the address of the instruction following the call, that
instruction will be executed next [Return Address]

– If the stack has been used for other values after the call, these
must be removed before the ret instruction is executed

Alternative Ret Format
• ret n

– After the returned address is popped to EIPfrom the
stack, n is added to ESP.

– This is most often used to logically remove procedure
parameters that have been pushed onto the stack

– Used in Stdcall Protocol
• Protocol?

– Transfer of control from calling program to procedure and back
– Passing parameter values to procedure and results back from the

procedure
– Having procedure code that is independent of the calling program

Procedure protocols for Stack Clean-Up
• 2 Protocols for Procedure handling

– Cdecl (“C Declaration”) --- Caller Clean-Up
– Stdcall (“Standard Call”) --- Callee Clean-Up

“Clean-up” means move Stack Pointer back to the original position

ckim
Rectangle

Cdecl (“C Declaration”)
• Caller Clean-up convention
• used by many C systems for the x86 architecture.
• Default in Visual Studio
• Function parameters are pushed on the stack.
• Function return values are returned in the EAX register
• Registers EAX, ECX, and EDX are available for use in

the function.
• The calling program cleans the stack after the function

call returns

Stdcall --- we use this in class
• Callee Clean-up Convention
• A variation on the Pascal calling convention
• Callee is responsible for cleaning up the stack

– Ret N
– N is added to ESP

• Parameters are pushed to the stack
• Registers EAX, ECX, and EDX are designated for use within the

function.
• Return values are stored in the EAX register.
• Standard calling convention for the Microsoft Win32 API.

Structure of Procedure in Coding (Stdcall)

Push Instruction

•Usual format: push source
–source can be memory, register or immediate
–doubleword or word pushed on the stack

•ESP decremented by size of operand
•Operand stored in stack where ESP points after
being decremented
•Flags not changed
•By Push, stack point goes lower (“grows”) in
address (ESP)
•Push/Pop from the Stack Pointer (ESP register)

Push Instruction

ckim
Typewritten Text
0010 <------ Stack Pointer

ckim
Pencil

Push Example
• Pushd --- DWORD size operand

pop Instruction and Execution
• Usual format: pop destination

– doubleword destination can be memory or
register

• Operand stored in stack where ESP point is
copied to destination

• ESP incremented by size of operand after the
value is copied

pop Instruction and Execution

Pop Example [pop CX]

Push Exercise
• Before

– [ESP]=06 00 10 00
– [ECX]=01 A2 5B 74

• After push ECX
• After pushd 10

– [STACK]= ?

Push – Practice
• Before:

– [ESP]=02 00 0B 7C
– [EBX]=12 34 56 78

• Stack Diagram and [ESP]
– After pushd 20
– After push EBX

Push-Pop Practice
• Before:

– [ESP]=00 10 F8 3A
– [EAX]=12 34 56 78

• Stack Diagram, [EAX], [EBX], & [ESP]
– After

• Push EAX
• Pushd 30
• Pop EAX
• Pop EBX

Push/Pop example code: Proc1.asm

Push/Pop example code: Proc1.asm

Push/Pop example code: Proc1.asm

• push EAX

Push/Pop example code: Proc1.asm

• pushd ‐240

Push/Pop example code: Proc1.asm

• pushw 5

Push/Pop example code: Proc1.asm

• pop EAX

Push/Pop example code: Proc1.asm

• pop AX

Push/Pop example code: Proc1.asm

• pop EBX

Procedure Example – CallAddTwo.asm (“Stdcall”)

push EAX
;for word1

push EAX
;for
word2

call AddTwo
• Note that

EIP (for
return
address) is
stored in the
stack

push EBP

mov EBP, ESP
;to save ESP

mov EAX,[EBP+12]

add EAX, [EBP+8]

pop EBP

ret 8
;Add 8
to ESP

.LST file

Code with actual address (and stack)

• Stack

Tracking EIP and ESP

Summary for Stdcall
MAIN CODE
1. Parameter values passed on the stack
2. Call a procedure (this pushes the return address in EIP to the stack)

PROCEDURE
1. Push EBP and Copy ESP to EBP (EBP becomes the reference for

retrieving the parameter values) – fixed location on the stack while ESP
may vary.

2. Push Register(s) if necessary
3. Retrieve Parameter values referenced to EBP
4. Do the functions
5. Pop the Register(s) if pushed
6. Pop EBP
7. Ret N (First, this pops the return address to EIP. And, second, N, which is

the number of bytes pushed in the MAIN CODE, is added to ESP)

MAIN CODE
1. Continue for the next step.

