
x86 Assembly Programming
Part 3

EECE416 Microcomputer

Charles Kim
Howard University

Resources:
Intel 80386 Programmers Reference Manual

Essentials of 80x86 Assembly Language
Introduction to 80x86 Assembly Language Programming

ckim
Typewritten Text
Web Page: www.mwftr.com/416F15.html

Exercise of Register Size and Data –
Do it by hand or by Coding

• Example:
Before Instruction After

EAX: 01 1F F1 23 mov AX, -1 EAX: 01 1F FF FF

ASM code for testing

Debugging for (c)

Debugging for (f)

After (f)

Basic Data Types

• Byte (BYTE), Words
(WORD), Double
Words (DWORD)

• Little-Endian
• Align by 2 (word) or 4

(Dword) for better
performance – instead
of odd address

Data Declaration
• Directives for Data Declaration and

Reservation of Memory
– BYTE: Reserves 1 byte in memory

• Example: D1 BYTE 20
D2 BYTE 00010100b
String1 BYTE “Joe” ;

[4A 6F 65]

– WORD: 2 bytes are reserved
• Example: num1 WORD -10

num2 WORD 0FFFFh

– DWORD: 4 bytes are reserved
• Example: N1 DWORD -10

– QWORD: 8 bytes
• 64 bit: RAX RBX RCX ,etc
• 32 bit: EDX:EAX Concatenation for CDQ instruction

Instruction Format
• Opcode:

– specifies the operation performed by the
instruction.

• Register specifier
– an instruction may specify one or two

register operands.

• Addressing-mode specifier
– when present, specifies whether an operand

is a register or memory location.
• Displacement

– when the addressing-mode specifier
indicates that a displacement will be used to
compute the address of an operand, the
displacement is encoded in the instruction.

• Immediate operand
– when present, directly provides the value of

an operand of the instruction. Immediate
operands may be 8, 16, or 32 bits wide.

11

386 Instruction Set

• 9 Operation
Categories
– Data Transfer
– Arithmetic
– Shift/Rotate
– String Manipulation
– Bit Manipulation
– Control Transfer
– High Level Language

Support
– Operating System

Support
– Processor Control

• Number of operands:
0, 1, 2, or 3

Data movement Instructions
• MOV (Move)

– transfers a byte, word, or doubleword from the source operand to
the destination operand: R M, M R, R R, I R, I M

– The MOV instruction cannot move M M
– M M via MOVS (string)

• MOVZX (Move with Zero-Extended)
• MOVSX (Move with Sign-Extended)
• XCHG (Exchange)

– swaps the contents of two operands.
– swap two byte operands, two word operands, or two

doubleword operands.
– The operands for the XCHG instruction may be two

register operands, or a register operand with a
memory operand.

MOVZX and MOVSX
• MOVZX

mov AL, 8Fh
movzx AX, AL

• MOVSX

mov AL, 8Fh
movsx, AX, AL

Direct-Offset Operands
• Add displacement to the name of a variable
• Accessing memory locations that may not have

explicit labels
• BYTE Case [AL]

Direct-Offset Operands
• WORD case [AX]

• DWORD case [EAX]

Example Code /ch04/moves.asm

Data and Code Segment

Data type Conversion Instructions
• CBW (Convert Byte to Word)

– extends the sign of the byte in
register AL throughout AX.

• CWDE (Convert Word to Doubleword
Extended)
– extends the sign of the word in

register AX throughout EAX.
• CWD (Convert Word to Doubleword)

– extends the sign of the word in
register AX throughout register DX

– can be used to produce a doubleword
dividend from a word before a word
division

• CDQ (Convert Doubleword to Quad-
Word)
– extends the sign of the doubleword

in EAX throughout EDX.
– can be used to produce a quad-word

dividend from a doubleword before
doubleword division.

Data type Conversion Instructions – Practice
• CBW (Convert Byte to Word)

– extends the sign of the byte
in register AL throughout AX.

• CWDE (Convert Word to
Doubleword Extended)

– extends the sign of the word
in register AX throughout
EAX.

• CWD (Convert Word to
Doubleword)

– extends the sign of the word
in register AX throughout
register DX

– can be used to produce a
doubleword dividend from a
word before a word division

• CDQ (Convert Doubleword to
Quad-Word)

– extends the sign of the
doubleword in EAX
throughout EDX.

– can be used to produce a quad-
word dividend from a
doubleword before doubleword
division.

Data type Conversion Instructions – Code

• CBW (Convert Byte to Word)
– extends the sign of the byte in register AL throughout

AX.
• CWDE (Convert Word to Doubleword Extended)

– extends the sign of the word in register AX throughout
EAX.

• CWD (Convert Word to Doubleword)
– extends the sign of the word in register AX throughout

register DX
– can be used to produce a doubleword dividend from a

word before a word division
• CDQ (Convert Doubleword to Quad-Word)

– extends the sign of the doubleword in EAX throughout
EDX.

– can be used to produce a quad-word dividend from a
doubleword before doubleword division.

Addition Instruction
• ADD (Add Integers)

– (DST + SRC) DST
– replaces the destination operand with the sum of the

source and destination operands. OF, SF, ZF, CF are
all affected.

Status Flags

Status Flags
– CF (Carry Flag) EFL[0]

• 1: Result of unsigned operation is too large
• 0: otherwise

– PF (Parity Flag) EFL[2]
• 1: LSB contains an even number of 1’s
• 0: odd number of 1’s

– AF (Auxiliary Carry Flag) EFL[4]
• 1: Carry from bit 3 to bit 4 in an 8-bit operation
• 0: Otherwise

– ZF (Zero Flag) EFL[6]
• 1: Result is zero (0)
• 0: Non-zero

– SF (Sign Flag) EFL[7]
• 1: Result is Negative
• 0: Positive

– OF (Overflow Flag) EFL[11]
• 1: Result of signed operation is too large
• 0: Otherwise

Flags: CF, ZF, SF
• SF (Sign Flag): 1 (neg) 0 (pos)
• ZF (Zero Flag): 1 (result is zero) 0 (otherwise)
• CF (Carry Flag)

– If the sum of two numbers is one bit longer than the
operands, the extra 1 is a carry (or carry out) CF=1

• A 1 carried into the highest-order (sign, leftmost) bit position
during addition is called a “carry in”.

– CF=1 for borrow (or no carry) in subtraction.
– CF =1 when there is Carry Out in Addition

Flags1.asm

Flags: OF
• OF (Overflow flag)

– OF=1 when there is a CARRY IN but no CARRY OUT
– OF=1 when there is a CARRY OUT but no CARRY IN
– If OF=1, result is wrong when adding 2 signed numbers

• Example
483F + 645A AC99
Carry In but no Carry Out

OF=1
No Carry Out CF=0

• Interpretation:
– If the operation is for unsigned number addition Correct
– If the operation is for signed numbers Incorrect

Flags1.asm

Status Flags --- BEFORE
• BEFORE:

– EAX= FFFFFF97h
– EFL= 00000A96h

Status Flags -- AFTER
• AFTER: add eax, 158

– EAX= 00000035h
– EFL= 00000217h

Flags1.asm

SUB (Subtract Integers)
• SUB:

– Operation: (DST – SRC) DST
– subtracts the source operand from the destination operand and

replaces the destination operand with the result. If a borrow is
required, the CF is set. The operands may be signed or unsigned
bytes, words, or doublewords.

• label mnemonic dst, src

SUB (Subtract Integers) – Manual Check

ADD & SUB Examples --- Manual Check

• SUB [dst] – [src]

SF: Sign Falg
ZF: Zero Flag
CF: Carry Flag
OF: Overflow Flag

INC & DEC
• INC (Increment)

– DST +1 DST
– adds one to the destination operand. INC does not affect CF. Use ADD

with an immediate value of 1 if an increment that updates carry (CF) is
needed.

• DEC (Decrement)
– DST – 1 DST
– subtracts 1 from the destination operand. DEC does not update CF. Use SUB

with an immediate value of 1 to perform a decrement that affects carry.

INC + DEC examples

CMP + NEG
• CMP (Compare)

– DST – SRC
– subtracts the source operand from the destination operand. It updates OF, SF,

ZF, AF, PF, and CF but does not alter the source and destination operands.

• NEG (Negate)
– 0 – DST DST
– subtracts a signed integer operand from zero. The effect of NEG is to

reverse the sign of the operand from positive to negative or from negative to
positive (i.e., 16’s complement)

– SF and ZF are affected

NEG Examples

Inc/Neg Practice

Link Library Procedures – Just a few
• DumpRegs

– Displays EAX, EBX, etc

• ReadDec
– Reads a 32-bit unsigned decimal integer from keyboard and

returns the value in EAX

• ReadHex
– Reads a 32-bit unsigned hex integer from the keyboard and

returns the value in EAX

• ReadInt
– Reads a 32-bit signed decimal integer from the keyboard and

returns the value in EAX

• WriteString
– Write a null-terminated string to the console window (pass the

string’s offset in EDX)

DumpRegs

Multiplication Instruction - MUL

• MUL (Unsigned Integer Multiply)
– performs an unsigned multiplication of the source operand and

the accumulator [(E)AX].
– If the source is a byte, the processor multiplies it by the

contents of AL and returns the double-length result to AH and AL
(Concatenated) i.e, AX.

– If the source operand is a word, the processor multiplies it by
the contents of AX and returns the double-length result to DX
and AX.

– If the source operand is a double-word, the processor
multiplies it by the contents of EAX and returns the 64-bit result
in EDX and EAX (Concatenated). MUL sets CF and OF when
the upper half of the result is nonzero; otherwise, they are
cleared.

– Operand cannot be immediate

MUL Opr/Store Summary

MUL - Exercise

IMUL (Signed Integer Multiply)
• performs a signed multiplication operation. IMUL has three

variations:
– 1. An one-operand form. The operand may be a byte, word, or

doubleword located in memory or in a general register. This
instruction uses EAX and EDX as implicit operands in the same
way as the MUL instruction.

– 2. A two-operand form. One of the source operands may be
in any general register while the other may be either in
memory or in a general register. The product replaces the
general-register operand.

– The immediate operand is treated as signed. If the immediate
operand is a byte, the processor automatically sign-extends
to the size of destination before performing the
multiplication.

IMUL

Division Instruction

• DIV (Unsigned Integer Divide)
– performs an unsigned division of the accumulator by the source

operand.
– The dividend (the accumulator) is twice the size of the divisor (the

source operand)
– the quotient and remainder have the same size as the divisor.

• IDIV (Signed Integer Divide)
– performs a signed division of the accumulator by the source operand.
– uses the same registers as the DIV instruction

DIV opr/store summary

DIV & IDIV

DIV vs IDIV

MUL & IMUL

DIV & IDIV

Exercise

MulDiv.asm

TcTf.asm

Boolean Operation Instruction
• AND, OR, XOR, and NOT
• NOT (Not)

– inverts the bits in the specified operand to form a one's complement of
the operand.

– a unary operation that uses a single operand in a register or memory.
– has no effect on the flags.

• AND: logical operation of "and“
• OR: Logical operation of “(inclusive)or”
• XOR: Logical operation of "exclusive or".
• AND, OR, XOR clear OF and CF, leave AF undefined, and update

SF, ZF, and PF.

Bit Test, Modify, Scan Instructions
• Bit Test

– Operates on a single bit in a register or memory
– assign the value of the selected bit to CF, the carry flag. Then a new value is

assigned to the selected bit, as determined by the operation.

• Bit Scan
– scan a word or doubleword for a one-bit and store the index of the first set bit into a register.
– The ZF flag is set if the entire word is zero (no set bits are found)
– ZF is cleared if a one-bit is found.
– If no set bit is found, the value of the destination register is undefined.
– BSF (Bit Scan Forward)

• scans from low-order to high-order (starting from bit index zero).
– BSR (Bit Scan Reverse)

• scans from high-order to low-order (starting from bit index 15 of a word or index 31 of a doubleword).

Shift Instructions
• The bits in bytes, words, and doublewords may be

shifted arithmetically or logically, up to 31 places.
• Specification of the count of shift

– Implicitly as a single shift
– Immediate value
– Value contained in the CL (lower order 5 bits)

• CF always contains the value of the last bit shifted out of the
destination operand.

• In a single-bit shift, OF is set if the value of the high-order (sign) bit
was changed by the operation. Otherwise, OF is cleared.

• The shift instructions provide a convenient way to accomplish
division or multiplication by binary power.

SAL, SAR, SHL, SHR
• SAL (Shift Arithmetic Left) shifts the destination byte, word, or

doubleword operand left by one or by the number of bits specified in
the count operand.
– CF receives the last bit shifted out of the left of the operand.

• SAR (Shift Arithmetic Right) shifts the destination byte, word, or
doubleword operand to the right by one or by the number of bits
specified in the count operand.
– SAR preserves the sign of the register/mem operand as it shifts the

operand to the right.
– CF receives the last bit shifted out of the right of the operand.

• SHL (Shift Logical Left) is a synonym for SAL
– CF Receives the last bit shifted out of the left of the operand.
– SHL shifts in zeros to fill the vacated bit locations

• SHR (Shift Logical Right) shifts the destination byte, word, or
doubleword operand right by one or by the number of bits specified
in the count operand.
– CF received the last bit shifted out of the right of the operand.
– Shifts in zeros to fill the vacated bit locations.

SHL SAL SHR SAR

Rotation

MOVE

Arithmetic

Logic +

Jump

