
x86 Assembly Programming
Part 2

EECE416 Microcomputer

Charles Kim
Howard University

Resources:
Intel 80386 Programmers Reference Manual

Essentials of 80x86 Assembly Language
Introduction to 80x86 Assembly Language Programming

WWW.MWFTR.COM/uC.html

1 Sample Code and Run in Visual Studio – Open Project Solution

2 Sample Code and Run in Visual Studio – Select Project.sln

3.Sample Code and Run in Visual Studio – Addsub.asm

4 Sample Code and Run in Visual Studio – Build Solution/Compile

5. Sample Code and Run in Visual Studio – Build Success

6 Sample Code and Run in Visual Studio --- Run/Debug (F10 key)

7. Sample Code and Run in Visual Studio --- LIST file open

8 Sample Code and Run in Visual Studio --- .LST file

9 Sample Code and Run in Visual Studio --- .lst

10 Sample Code and Run in Visual Studio --- .lst

11 Sample Code and Run in Visual Studio – When a new code is tested

12 Sample Code and Run in Visual Studio --- Read in the new code

13 Sample Code and Run in Visual Studio --- New code

14.LST File and The Memory Contents of Code

16

Arduino Project 2
• Base: Arduino + ShiftBrite
• Project 1 --- Base + (PIR, Distance, Gas, Touch, Joystick,

Temperature, etc)
• Project 2 --- Base + (Project 1 components) + (Project 2

Component)
• Multiple Teams Can build a big system
• Will be graded

• Project 2 Presentation + Demo (with a plausible scenario)
• Tuesday November 10 Class
• Presentation:

• ~ 10 slides of explaining the scenario
• Code section explanation ---- “What this code line

is for”
• Video Clip Attachment of operation

{Recommended}
• Demonstration

Registers for x86

Basic Data Types

• Byte (BYTE), Words
(WORD), Double
Words (DWORD)

• Little-Endian
• Align by 2 (word) or 4

(Dword) for better
performance – instead
of odd address

Instruction Format
• Opcode:

– specifies the operation performed by the
instruction.

• Register specifier
– an instruction may specify one or two

register operands.

• Addressing-mode specifier
– when present, specifies whether an operand

is a register or memory location.
• Displacement

– when the addressing-mode specifier
indicates that a displacement will be used to
compute the address of an operand, the
displacement is encoded in the instruction.

• Immediate operand
– when present, directly provides the value of

an operand of the instruction. Immediate
operands may be 8, 16, or 32 bits wide.

Register Size and Data
• Assuming that the content of eax is [01FF01FF],

what would be the content of eax after each
instruction?

eax:[]
eax:[]
eax:[]

• Further Example
• Before EAX: [01010101]

mov al -10 ; EAX:[]
mov ax, -10; EAX: []
mov eax, -10; EAX: []

Exercise of Register Size and Data –
Do it by hand or by Coding

• Example:
Before Instruction After

EAX: 01 1F F1 23 mov AX, -1 EAX: 01 1F FF FF

