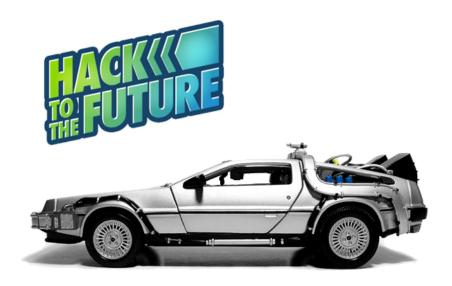
WWW.MWFTR.COM/416F15.html Dr. Charles Kim

EECE416 Microcomputer Fundamentals & Design

Computer Architecture


Dr. Charles Kim Howard University

Ready to hack a better future?

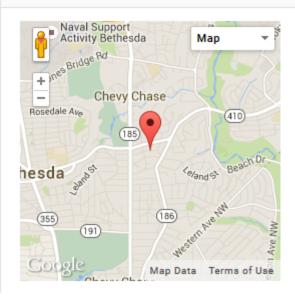
The Hackster Hardware Weekend is a celebration of makers, open source hardware and the Hackster community across America. From Seattle to NYC and everything in between, we are hitting the road driving an original DeLorean DMC 12 to run the coolest Hackathon & Meetup series of the year, with loads of hardware kits, amazing speakers, software freebies and great people. Our goal is simple: educate, connect and help people invent and create the seeds of a better future.

What will you build with the DeLorean? Share your ideas on the DeLorean projects page.

Schedule

Day 1

Day 2


10:00 am	Check-in and breakfast	9:00 am	Work on your hacks and get breakfast
11:00 am	Kickoff	12:30 pm	Lunch break with industry speaker
11:30 am	Training workshops	4:00 pm	Upload your hacks to Hackster
12:30 pm	Lunch served	5:30 pm	Demo your hacks!
1:00 pm	Start hacking	6:30 pm	Dinner served while judges deliberate
8:00 pm	Dinner served	7:00 pm	Winners announced, prizes awarded
12:00 am	Go home and get some rest	8:00 pm	Day two ends, thanks for participating!

5404 Wisconsin Ave, Suite 700 (Microsoft) Chevy Chase Chevy Chase, MD 20815-3522

Saturday, September 19, 2015 at 10:00 AM - Sunday, September 20, 2015 at 8:00 PM (EDT)

When & Where

"Computer Architecture"

Computer Architecture

- Art of selecting and interconnecting hardware components to create functional unit (or computer)
- \triangle 2 points of view

⊠Instruction Set architecture (ISA):

- the code that a CPU reads and acts upon. It is the machine language (or assembly language), including the instruction set, word size, memory address modes, processor registers, and address and data formats
- Interface between H/W and S/W
- programmers' point of view

Microarchitecture (or computer organization):

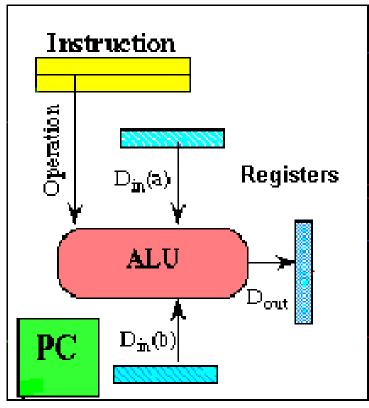
- describes the data paths, data processing elements and data storage elements, size of cache, and describes how they should implement the ISA
- Optimization
- Power Management
- system designers' point of view.

Analogy:

⊠ House (rooms) – views of builders and residents

⊠Car – views of manufacturers (or mechanics) and drivers

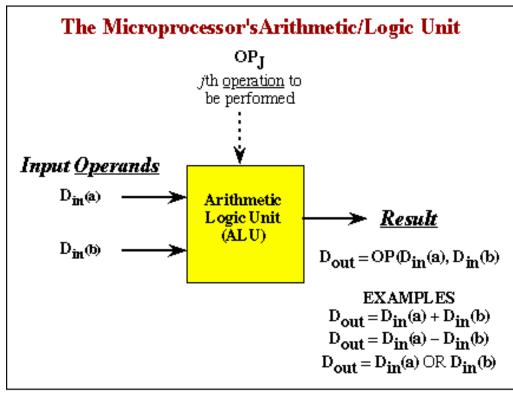
Micro-Architecture

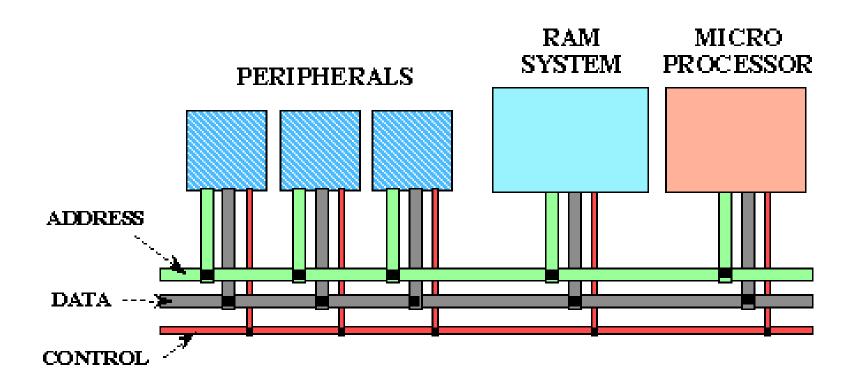

K Computer System

CPU (with PC, Register, SR) + Memory

Hicro-Architecture:

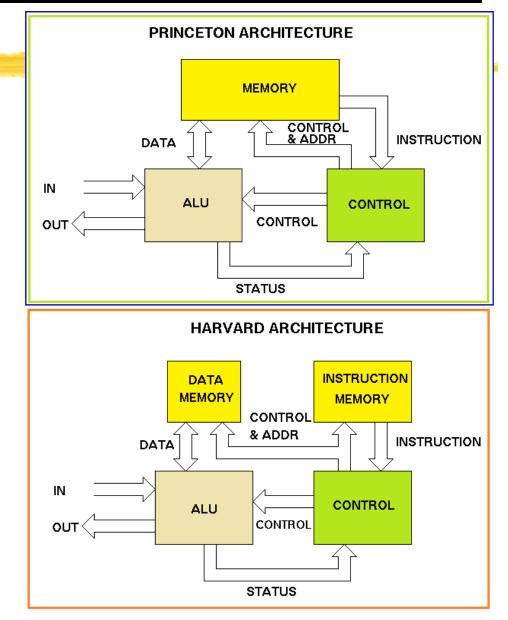
- "conceptual design and fundamental operational structure of a computer system"
- "blueprint and functional description of requirements and design implementations of a computer"
- focusing on the way the CPU performs and accesses memory.


Microprocessor


Micro-Architecture

ALU (Arithmetic Logic Unit)

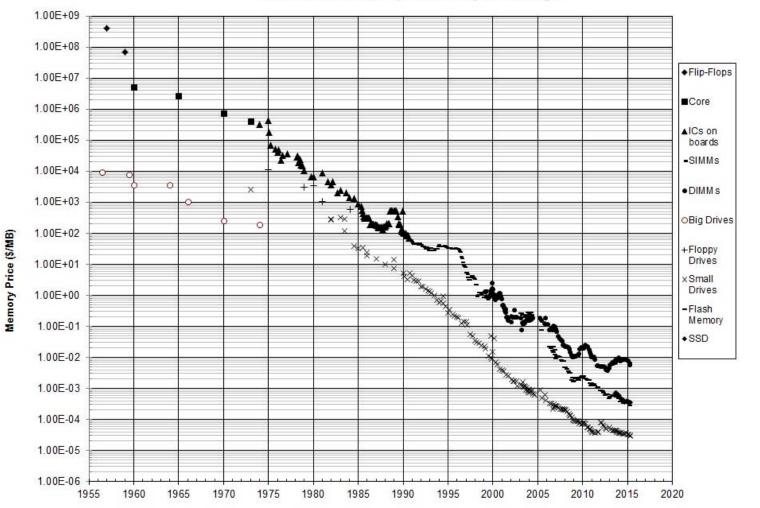
- Fundamental building block of CPU
- Binary Full Adder


Microprocessor Bus

7

Architecture by CPU+MEM organization

- Princeton (or von Neumann) Architecture
 MEM contains both Instruction and Data
 - ✓ Von Neumann Bottleneck CPU <→ Memory</p>
 - Cache
- Harvard Architecture
 - Data MEM and Instruction MEM
 - Higher Performance via Pipeline
 - Better for DSP
 - Higher MEM Bandwidth



Memory Price

🗲) 🛞 www.jcmit.com/mem2015.htm

VC Q Search

Graph of Memory Prices Decreasing with Time (1957-2015)

Historical Cost of Computer Memory and Storage

Memory Price

VC Q Search

Chart of Memory Price Through Time Download Excel Spreadsheet of Memory Data

Home

10 March 10	\$/Mbyte (Y)	Date	Ref:	Page	Company	Size	Cost	Speed	Memory Type
						KByte	US \$	nsec	
1957.00	411,041,792	1957	Phister 366		C.C.C.	0.00098	392.00	10000	transistor Flip-Flop
1959.00	67,947,725	1959	Phister 366		E.E.Co.	0.00098	64.80	10000	vacuum tube Flip-Flop
1960.00	5,242,880	1960	Phister 367		IBM	0.00098	5.00	11500	IBM 1401 core memory
1965.00 2	2,642,412	1965	Phister 367		IBM	0.00098	2.52	2000	IBM 360/30 core memory
1970.00	734,003	1970	Phister 367		IBM	0.00098	0.70	770	IBM 370/135 core memory
1973.00	399,360	1973 Jai	n PDP8/e User Price List		DEC	12	4680.00)	Core memory 8KwordX12 bit
1974.00	314,573	1974	Phister 367		IBM	0.00098	0.30	800	IC Memory for IBM 370/125
1975.00 ⁴	421,888	1975 Jai	n Radio- Electronics		MITS	0.25	103.00	1000	Altair 8800 256 Byte Static Board
1975.08	180,224	1975 Fe	b		MITS	1	176.00		Altair 1K Static Board
1975.25	67,584	1975 Ar	or		MITS	4	264.00		Altair 4K DRAM Board
1975.75	49,920	1975 Oc	:t		MITS	4	195.00		Altair 4K Static(2102) RAM Board
1976.00 4	40,704	1976 Jan	n		MITS	4	159.00		Altair 4K Static(2102) RAM Board
1976.17 4	48,960	1976 M	ar		MITS	16	765.00		Altair 16K Static RAM Board
1976.42	23,040	1976 Ju	n		SD Sales	4	90.00		SD Sales 4K Static Board
1976.58	32,000	1976 Au	ıg			8	250.00		8K Static RAM Board
1977.08	36,800	1977 Fe	b		TDL	16	575.00		S-100 16K
1978.17 2	28,000	1978 M	ar			64	1750.00)	S-100 64K
1978.25 2	29,440	1978 A _f	or			16	460.00		
1978.33	19,200	1978 M	ay			16	300.00		
1978.50 2	24,000	1978 Ju	<u> </u>		Extensis	64	1500.00)	
1978.58	16 <mark>,00</mark> 0	1978 Au	ıg			8	125.00		
1978.75	15,200	1978 Oc	t			32	475.00		
1979.00	10,528	1979 Jan	n Interface Age	124		32	329.00		
1979.75	6,704	1979 Oc	:t		SD Sales - Jade	64	419.00		S-100, SD Sales/Jade 64K Kit
1980.00	6,480	1980 Jan	n Interface Age	121		64	405.00		

"Pipeline"?

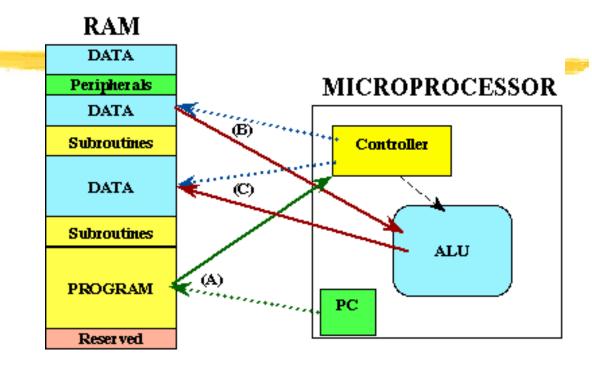
#Instruction Pipeline

An **instruction pipeline** is a technique used in the design of **computers** to increase their instruction throughput (the number of instructions that can be executed in a unit of time). Pipelining does not reduce the time to complete an instruction, but increases instruction throughput by performing multiple operations in parallel.

The term pipeline is an analogy to the fact that there is fluid in each link of a pipeline, as each part of the processor is occupied with work.

Instr. No.		Pipeline Stage					
1	F	ID	ΕX	MEM	WB		
2		IF	ID	ΕX	мем	WB	
3			IF	ID	ΕX	мем	WB
4				IF	ID	ΕX	MEM
5					IF	ID	EX
Clock Cycle	1	2	3	4	5	6	7

Basic five-stage pipeline in a RISC machine (IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory access, WB = Register write back). In the fourth clock cycle (the green column), the earliest instruction is in MEM stage, and the latest instruction has not yet entered the pipeline.

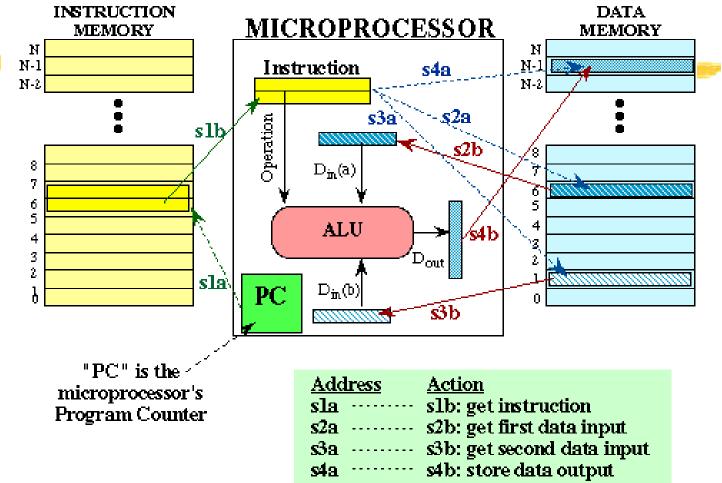

Princeton Architecture

1.Step (A): The

address for the instruction to be next executed is read into

2. **Step (B):** The controller "decodes" the instruction

3.**Step (C)**: Following completion of the instruction, the controller provides the address, to the memory unit, at which the data result generated by the operation will be stored.



•CPU can be either reading an instruction or reading/writing data from/to the memory.

•Both cannot occur at the same time since the instructions and the data use the same bus system

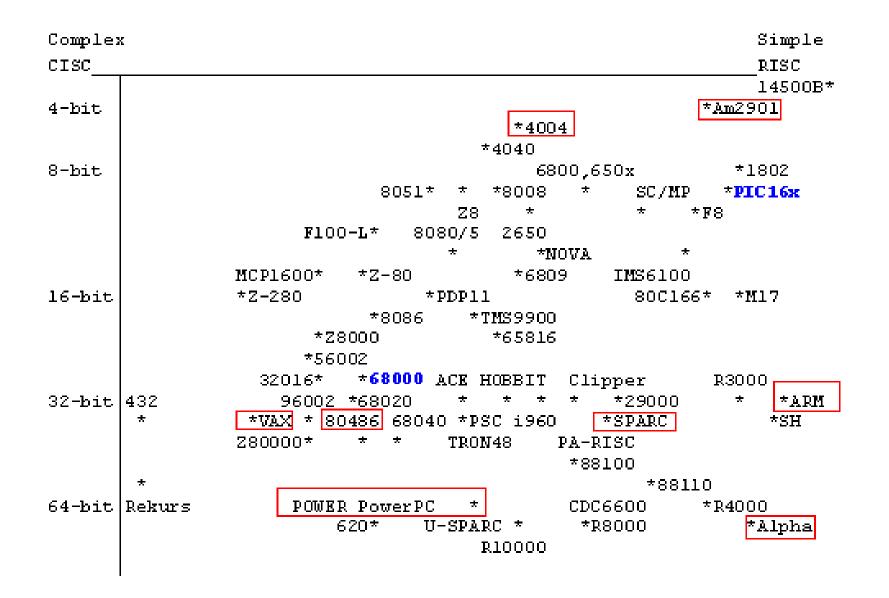
Harvard Architecture

- 1. CPU can both read an instruction and perform a data memory access at the same time.
- 2. Faster for a given circuit complexity because instruction fetches and data access do not contend for a single memory pathway.

Architecture by Instructions and Executions

- #CISC (Complex Instruction Set Computer)
 - Variety of instructions for complex tasks directly to hardware
 - Easy to translate high-level language to assembly
 - △Complex Hardware
 - Instructions of varying length
- #RISC (Reduced Instruction Set Computer)
 - ⊡ Fewer and simpler instructions
 - Each instruction takes the same amount of time
 - △Less complex hardware
 - ☐ High performance microprocessors
 - Pipelined instruction execution (several instructions are executed in parallel)

CISC


#Architecture of prior to mid-1980's
IBM390, Motorola 680x0, Intel80x86
#Basic Fetch-Execute sequence to support a large number of complex instructions
#Complex decoding procedures
#Complex control unit
#One instruction achieves a complex task

RISC

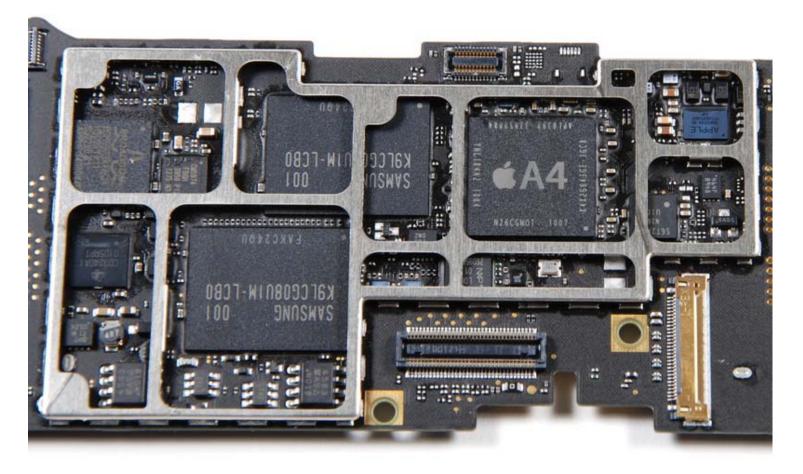
#Favorable changes for RISC

- Caches to speed instruction fetches
- □ Dramatic memory size increases/cost decreases
- ⊡Better *pipelining*
- Advanced optimizing compilers
- Characteristics of RISC
 - Instructions are of a uniform length
 - Increased number of registers to hold frequently used variables (16 - 64 Registers)
 - Central to High Performance Computing

Processor Classification

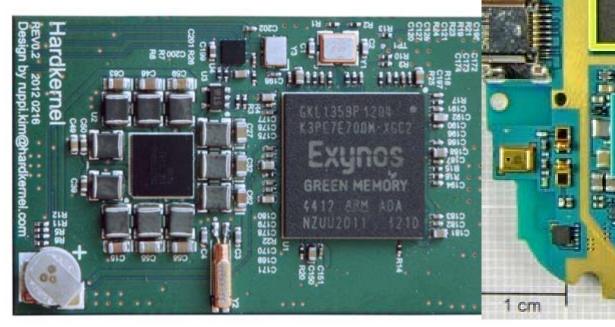
-

Intel inside?


Kext PCs or Mobile Computing

Devices
Smart phones
Apple Processors
ARMs
Qualcomm
Mobile Devices – Smartphones, MP3, Digicam (on ARM)
Run on Intel's x86? --- Intel's wish; what happened to Lumina?

What's inside?


HiPhone: 1GHz-A4 microprocessor, 256MB Samsung RAM,

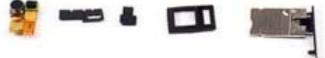
What's inside?

Samsung Galaxy

- Samsung Exynos quad-core A9 processor
- ☐ 1GB Memory
- ☐ Intel Wireless processor
- Broadcom Global Navigation Satellite System receiver

What's Inside?

HTC



What's inside?

XNokia Lumina

△1.4GHz Qualcomm CPU, 512MB RAM, 16GB Storage,

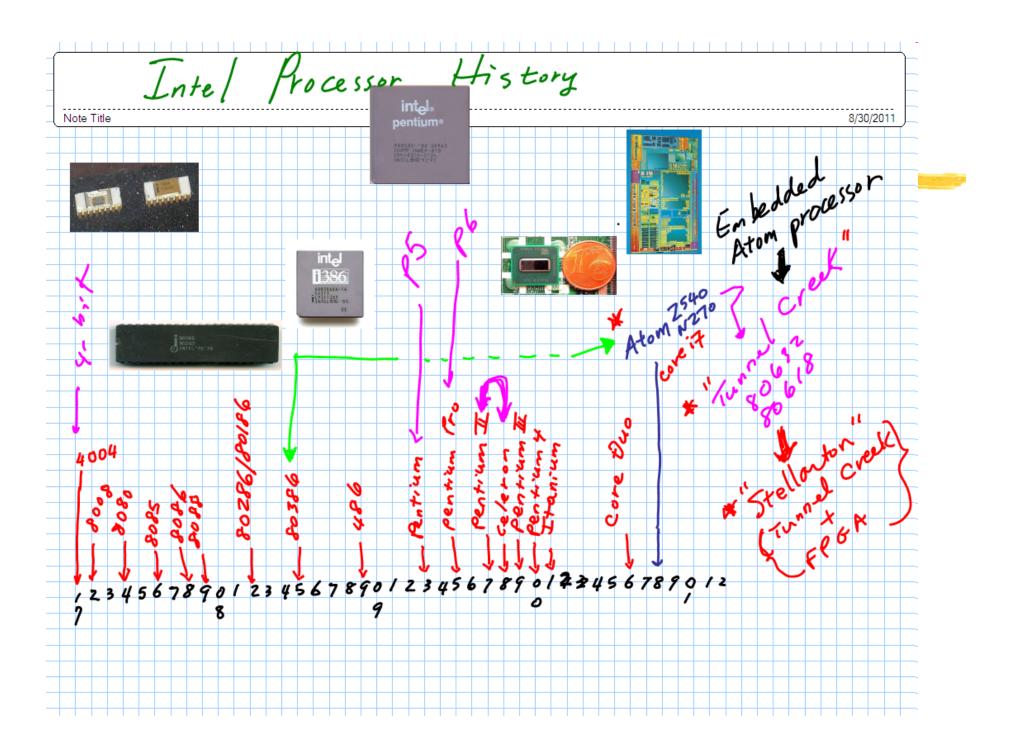
💭 Təshikəpublis.

INTEL VS. ARM ("Advanced RISC Machine")

ARMs

- No chip hardware license only (powerful and variety of licensees) → cell phones etc
- SoC device (CPU + I/O + Peripherals + Memory + etc)

INTEL

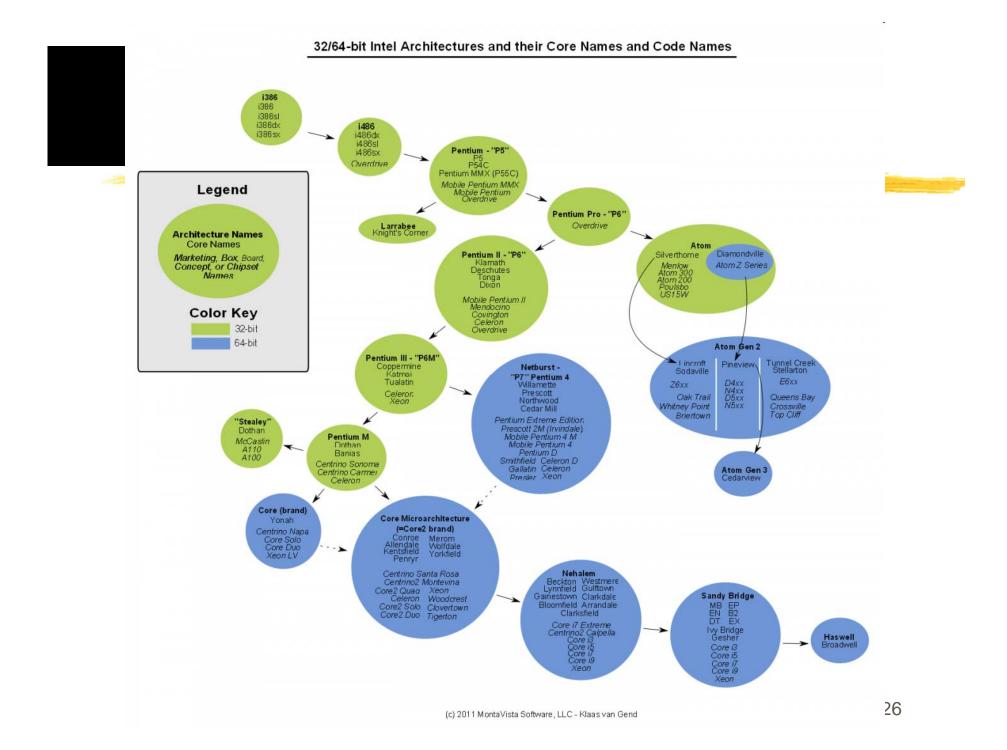

- Does not want to License x86 (Lesson from AMD)
- △New approach for SoC: Atom based X86 SoC
- **Recent Stride with "Intel Atom Inside"**
 - Main processor for Laptops and Netbooks and Tablets
 - Motorola Phones: Razr

Intel Atom

(inte Ator	n ^w inside ^w
duced	2008–present
nmon	Intel
nufacturer(s)	
CPU clock	800 MHz to 2 GHz

Proc

Common manufacturer(s)	Intel
Max. CPU clock	800 MHz to 2 GHz
FSB speeds	400 MHz to 667 MHz
Min. feature size	45nm
Instruction set	x86, x86-64 (not for the N and Z series)
Cores	1,2
Package(s)	441-ball µFCBGA
Core name(s)	Silverthorne Diamondville



Processor Performance

Processor Performance Over Time and Other Key Features of the Intel Architecture

Intel Processor	Date of Product Intro- duction	Perfor- mance in MIPs ¹	Max. CPU Frequency at Intro- duction	No. of Transis -tors on the Die	Main CPU Register Size ²	Extern. Data Bus S ize ²	Max. Extern. Addr. Space
8086	1978	0.8	8 MHz	29 K	16	16	1 MB
Intel 286	1982	2.7	12.5 MHz	134 K	16	16	16 MB
Intel386™ DX	1985	6.0	20 MHz	275 K	32	32	4 GB
Intel486™ DX	1989	20	25 MHz	1.2 M	32	32	4 GB
Pentium®	1993	100	60 MHz	3.1 M	32	64	4 GB
Pentium Pro	1995	440	200 MHz	5.5 M	32	64	64 GB

25

Intel 805xx product codes

Intel discontinued the use of part numbers such as 80486 in the marketing of mainstream x86-architecture microprocessors with the introduction of the Pentium brand in 1993. However, numerical codes, in the 805xx range, continued to be assigned to these processors for internal and part numbering uses. The following is a list of such product codes in numerical order:

Product code	Marketing name(s)	Codename(s)
80500	Pentium	P5 (A-step)
80501	Pentium	P5
80502	Pentium	P54C, P54CS
80503	Pentium with MMX Technology	P55C, Tillamook
80521	Pentium Pro	P6
80522	Pentium II	Klamath
80523	Pentium II, Celeron, Pentium II Xeon	Deschutes, Covington, Drake
80524	Pentium II, Celeron	Dixon, Mendocino
80525	Pentium III, Pentium III Xeon	Katmai, Tanner
80526	Pentium III, Celeron, Pentium III Xeon	Coppermine, Cascades
80528	Pentium 4, Xeon	Willamette (Socket 423), Foster
80529	cancelled	Timna
80530	Pentium III, Celeron	Tualatin

Intel 805XX Product Codes

80531	Pentium 4, Celeron	Willamette (Socket 478)
80532	Pentium 4, Celeron, Xeon	Northwood, Prestonia, Gallatin
80533	Pentium III	Coppermine (cD0-step)
80534	Pentium 4 SFF	Northwood (small form factor)
80535	Pentium M, Celeron M 310-340	Banias
80536	Pentium M, Celeron M 350-390	Dothan
80537	Core 2 Duo T5xxx, T7xxx, Celeron M 5xx	Merom
80538	Core Solo, Celeron M 4xx	Yonah
80539	Core Duo, Pentium Dual-Core T-series	Yonah
80541	Itanium	Merced
80542	Itanium 2	McKinley
80543	Itanium 2	Madison
80546	Pentium 4, Celeron D, Xeon	Prescott (Socket 478), Nocona, Irwindale, Cranford, Potomac
80547	Pentium 4, Celeron D	Prescott (LGA 775)
80548	canceled	Tejas and Jayhawk
80549	Itanium 2 90xx	Montecito

Intel 805XX Product Codes

80550	Dual-Core Xeon 71xx	Tulsa
80551	Pentium D, Pentium EE, Dual-Core Xeon	Smithfield, Paxville DP
80552	Pentium 4, Celeron D	Cedar Mill
80553	Pentium D, Pentium EE	Presler
80554	Celeron 800/900/1000 ULV	Shelton
80555	Dual-Core Xeon 50xx	Dempsey
80556	Dual-Core Xeon 51xx	Woodcrest
80557	Core 2 Duo E4xxx. E6xxx, Dual-Core Xeon 30xx, Pentium Dual-Core E2xxx	Conroe
80560	Dual-Core Xeon 70xx	Paxville MP
80562	Core 2 Quad, Core 2 Extreme QX6xxx, Quad-Core Xeon 32xx	Kentsfield
80563	Quad-Core Xeon 53xx	Clovertown
80564	Xeon 7200	Tigerton-DC
80565	Xeon 7300	Tigerton
80566	Atom Z5xx	Silverthorne
8 <mark>0567</mark>	Itanium 91xx	Montvale
80569	Core 2 Quad Q9xxx, Core 2 Extreme QX9xxx, Xeon 33xx	Yorkfield

Intel 805XX Product Codes

80570	Core 2 Duo E8xxx, Xeon 31xx	Wolfdale
80571	Core 2 Duo E7xxx, Pentium Dual-Core E5xxx, Pentium Dual-Core E2210	Wolfdale-3M
80573	Xeon 5200	Wolfdale-DP
80574	Core 2 Extreme QX9775, Xeon 5400	Harpertown
80576	Core 2 Duo P7xxx, T8xxx, P8xxx, T9xxx, P9xxx, SL9xxx, SP9xxx, Core 2 Extreme X9xxx	Penryn
80577	Core 2 Duo P7xxx, P8xxx, SU9xxx, T6xxx, T8xxx	Penryn-3M
80578	LE80578	Vermilion Range
80579	EP80579	Tolapai
80580	Core 2 Quad Q8xxx, Q9xxx, Xeon 33xx	Yorkfield-6M
80581	Core 2 Quad Q9xxx	Penryn-QC
80582	Xeon 74xx	Dunnington
80583	Xeon 74xx	Dunnington-QC
80584	Xeon X33x3 LV	Yorkfield CL
80585	Core 2 Solo SU3xxx, Celeron 7xx, 9xx	Penryn-L
80586	Atom 2xx, N2xx	Diamondville
80587	Atom 3xx	Diamondville DC
80588	Xeon L3014, E3113	Wolfdale-CL

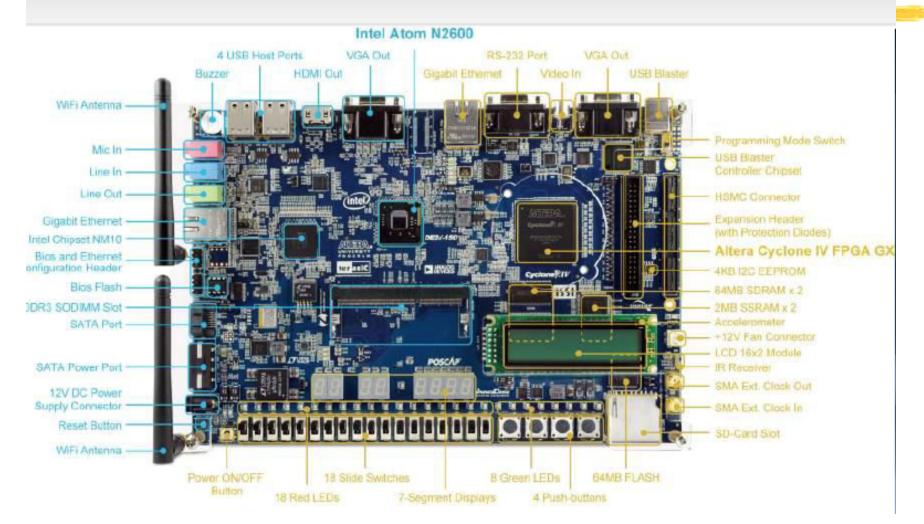
Intel 806XX Product Codes

Intel 806xx product codes

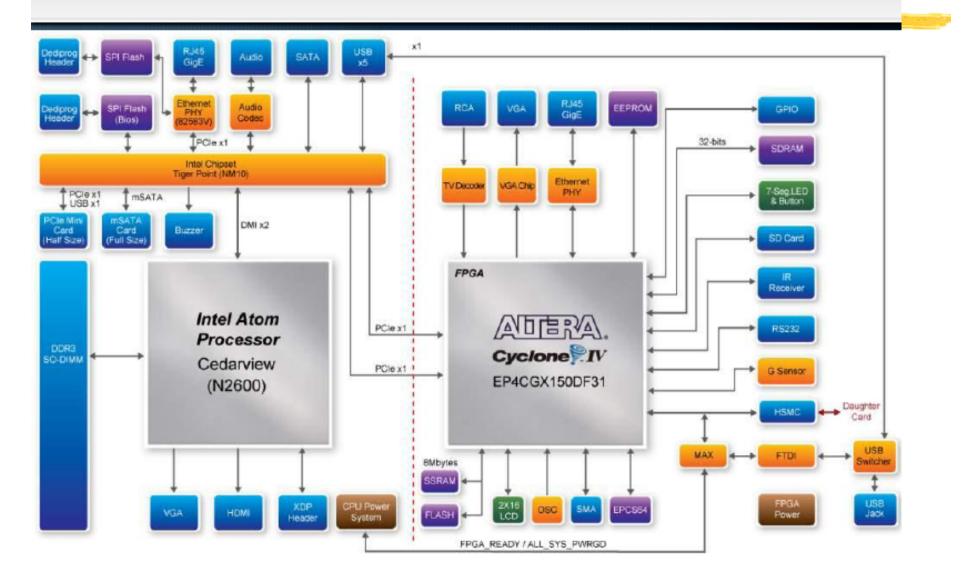
Product code	Marketing name(s)	Codename(s)
80601	Core i7, Xeon 35xx	Bloomfield
80602	Xeon 55xx	Gainestown
80603	Itanium 93xx	Tukwila
80604	Xeon 65xx, Xeon 75xx	Beckton
80605	Core i5-7xx, Core i7-8xx, Xeon 34xx	Lynnfield
80606	canceled	Havendale
80607	Core i7-7xx QM, Core i7-8xx QM, Core i7-9xx XM	Clarksfield
80608	canceled	Auburndale
80609	Atom	Lincroft
80610	Atom N400, D400, D500	Pineview

Intel 806XX Product Codes

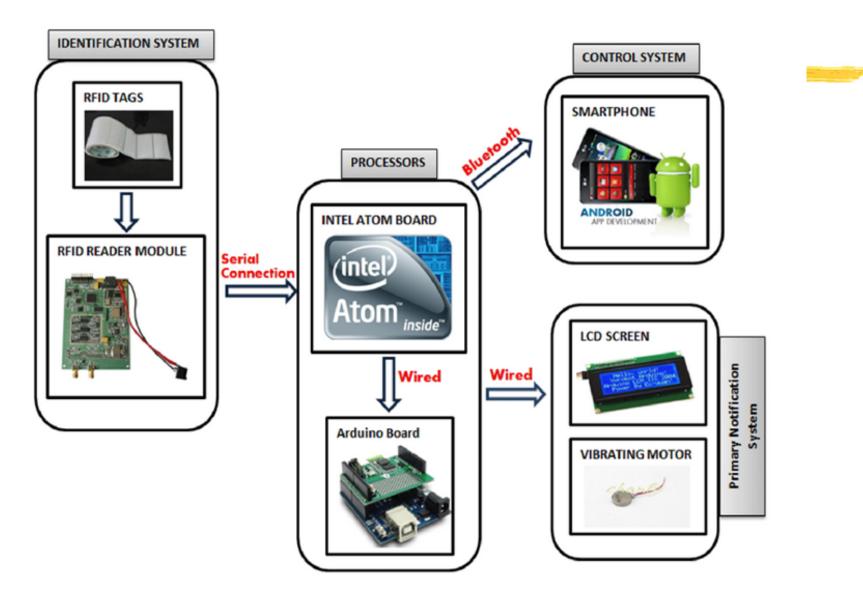
80611	canceled	Larrabee
80612	Xeon C35xx, Xeon C55xx	Jasper Forest
80613	Core i7-9xxX, Xeon 36xx	Gulftown
80614	Xeon 56xx	Westmere-EP
80615	Xeon E7-28xx, Xeon E7-48xx	Westmere-EX
80616	Pentium G6xxx, Core i3-5xx, Core i5-6xx	Clarkdale
30617	Core i5-5xx, Core i7-6xxM/UM/LM	Arrandale
30618	Atom	Tunnel Creek
30620	Xeon	Sandy Bridge-EP-8, Sandy Bridge-EP-4
30621	Xeon	Sandy Bridge-EP-8, Sandy Bridge-EP-4
80622	Xeon	Sandy Bridge-EP-8
80623	Xeon E3-xxxx, Core i3/i5/i7-2xxx, Pentium Gxxx	Sandy Bridge-HE-4, Sandry Bridge-M-2
30627	Core i3/i5/i7-2xxxM,, Pentium Bxxx, Celeron Bxxx	Sandy Bridge-HE-4, Sandy Bridge-H-2, Sandy Bridge-M-2
30632	Atom	Tunnel Creek
30640	Atom	Penwell
80641	Atom	Cedar View


New Intel Atom DE2i-150 Board

DE2i-150 Kit Contents


DE2i-150 Kit

DE2i-150 Floorplan



DE2i-150 Kit

DE2i-150 Block Diagram

What/How HU students did? An example

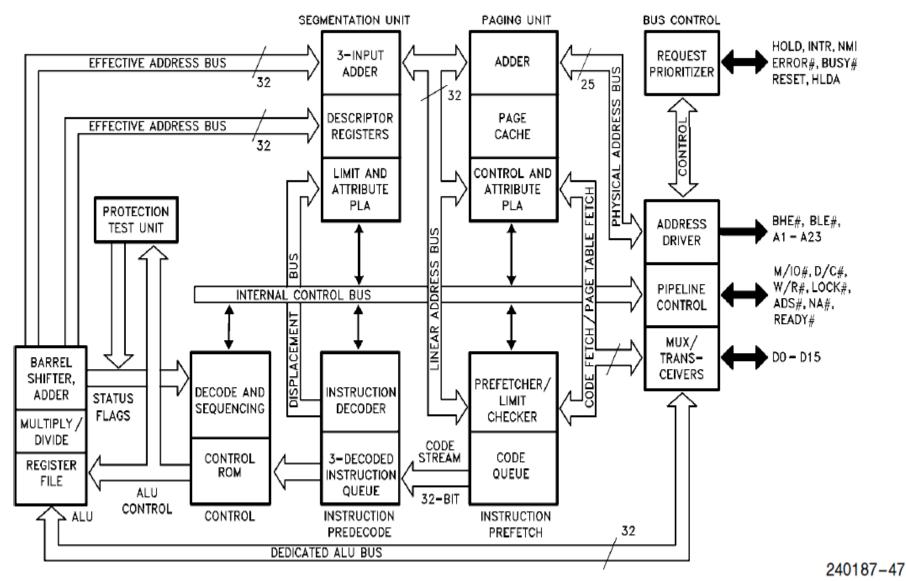
Intel 386 - Datasheet

intəl

Intel386[™] SX MICROPROCESSOR

24

- Full 32-Bit Internal Architecture
 - 8-, 16-, 32-Bit Data Types
 - 8 General Purpose 32-Bit Registers
- Runs Intel386TM Software in a Cost Effective 16-Bit Hardware Environment
 - Runs Same Applications and O.S.'s as the Intel386™ DX Processor
 - Object Code Compatible with 8086, 80186, 80286, and Intel386™ Processors
- High Performance 16-Bit Data Bus
 - 16, 20, 25 and 33 MHz Clock
 - Two-Clock Bus Cycles
 - Address Pipelining Allows Use of Slower/Cheaper Memories
- Integrated Memory Management Unit
 - Virtual Memory Support
 - Optional On-Chip Paging
 - 4 Levels of Hardware Enforced Protection
 - MMU Fully Compatible with Those of the 80286 and Intel386 DX CPUs
- Virtual 8086 Mode Allows Execution of 8086 Software in a Protected and Paged System


- Large Uniform Address Space 16 Megabyte Physical
 - 64 Terabyte Virtual
 - 4 Gigabyte Maximum Segment Size 🦛 32

DIR

Ιь

- Numerics Support with the Intel387TM SX Math CoProcessor
- On-Chip Debugging Support Including Breakpoint Registers
- Complete System Development Support
 - Software: C, PL/M, Assembler
 - Debuggers: PMON-386 DX, ICETM-386 SX
- High Speed CHMOS IV Technology
- Operating Frequency:
 - Standard (Intel386 SX -33, -25, -20, -16) Min/Max Frequency (4/33, 4/25, 4/20, 4/16) MHz
 - Low Power (Intel386 SX -33, -25, -20, -16, -12) Min/Max Frequency (2/33, 2/25, 2/20, 2/16, 2/12) MHz
- 100-Pin Plastic Quad Flatpack Package (See Packaging Outlines and Dimensions #231369)

Intel 386 - Datasheet

Intel386[™] SX Pipelined 32-Bit Microarchitecture

Intel 386 - Brief

00 66 88

 \cap

HLDA

HOLD

READY

000000

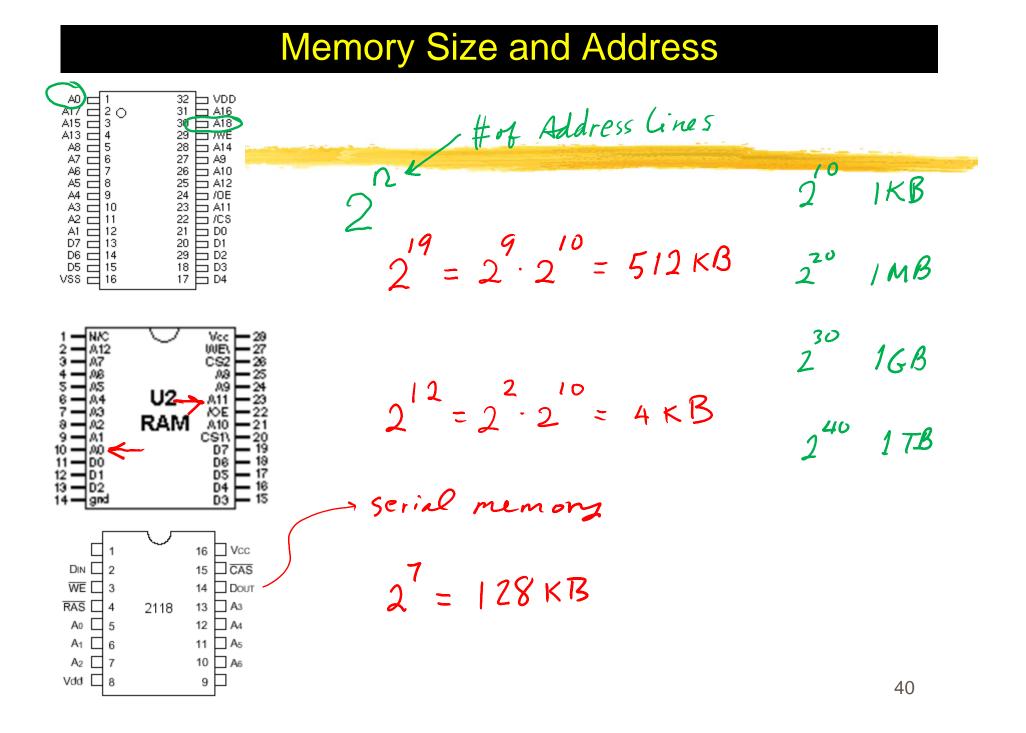
> A20

A18

A17

V_{CC} V_{SS} A15 A14 A13 V_{SS} A12

A11 A10 A9 A8 V_{CC} A7 A6 A5


> A4

53

5:

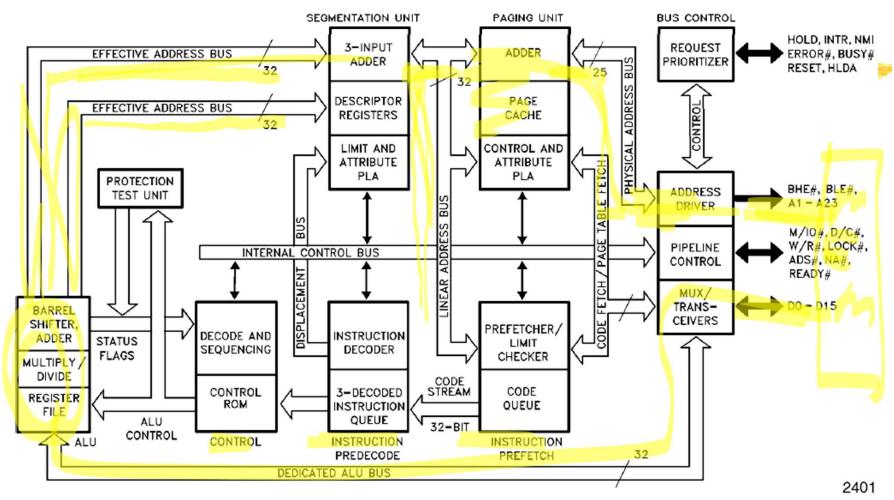
- 🔀 Address: A23- A1
 - ☑ BLE# and BHE# ("Byte Enable")
- 🔀 Data: D15 D0
- ₭ Control

							12 13 14 15 16	
Address		Data	Control	I	N/C	Vcc	V _{SS}	
A2 5 A3 5 A4 5 A5 A6 5 A6 5 A7 5 A8 5 A9 5 A10 6 A11 6 A12 6 A12 6 A13 6 A14 6 A15 7 A16 7 A17 7 A18 7 A19 7 A19 7 A21 7 A22 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	87 2 86 8 83 8 82	ADS# BHE# BLE# BUSY# CLK2 D/C# ERROR# FLT# HLDA HOLD INTR LOCK# M/IO# NA# NMI PEREQ READY# RESET W/R#	16 19 17 34 5 24 36 28 3 4 40 26 23 6 38 37 7 33 25	20 27 29 30 31 43 44 45 46 47	8 9 10 21 32 39 42 48 57 69 71 84 91 97	2 5 11 12 13 14 22 35 41 49 50 63 67 68 77 85 98	

Review on Number Systems

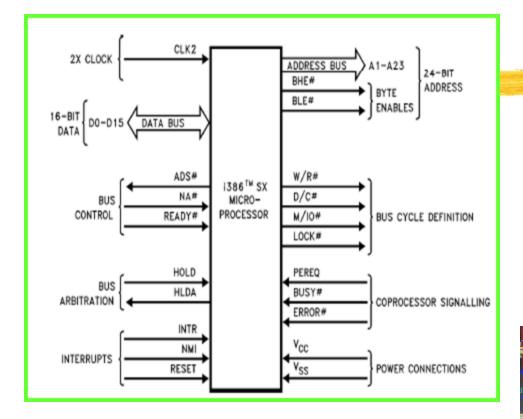
	Binary	Hexadecimal	Decimal	
1.	100			
2.	10101101			
3.	1101110101			
4.	11111011110			
5.	1000000001			
6.		8EF		
7.		10		
8.		A52E		
9.		70C		
10.		6BD3		
11.			100	
12.			527	
13.			4128	
14.			11947	
15.			59020	

Memory Size and Address 2

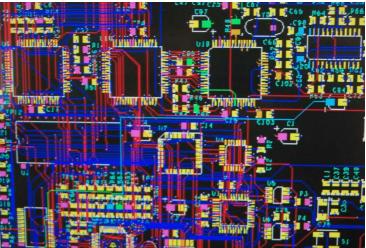

Intel 386 - Brief

- Address: A23- A1 (where is A0?)BLE# and BHE# ("Byte Enable")
- 🔀 Data: D15 D0
- Control

						CONTROL	READY#	PROCESSOR
Addr	Address Data		Contro	I	,			
A1 A2 A3 A4 A5 A6 A7 A8	18 51 52 53 54 55 56 58 58	D ₀ D ₁ D ₂ D ₃ D ₄ D ₅ D ₆ D ₇	1 100 99 96 95 94 93 92 90	ADS# BHE# BLE# BUSY# CLK2 D/C# ERROR# FLT#	16 19 17 34 15 24 36 28 3	BUS	HOLD HLDA INTR NMI RESET	
A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23	59 60 61 62 65 66 70 72 73 74 75 76 79 80	D ₈ D ₁₀ D ₁₁ D ₁₂ D ₁₃ D ₁₄ D ₁₅	89 88 87 86 83 82 81	HLDA HOLD INTR LOCK# M/IO# NA# NMI PEREQ READY # RESET W/R#	4 40 26 38 37 7 33 25	47	69 71 84 91 97	49 50 63 67 68 77 78 85 98

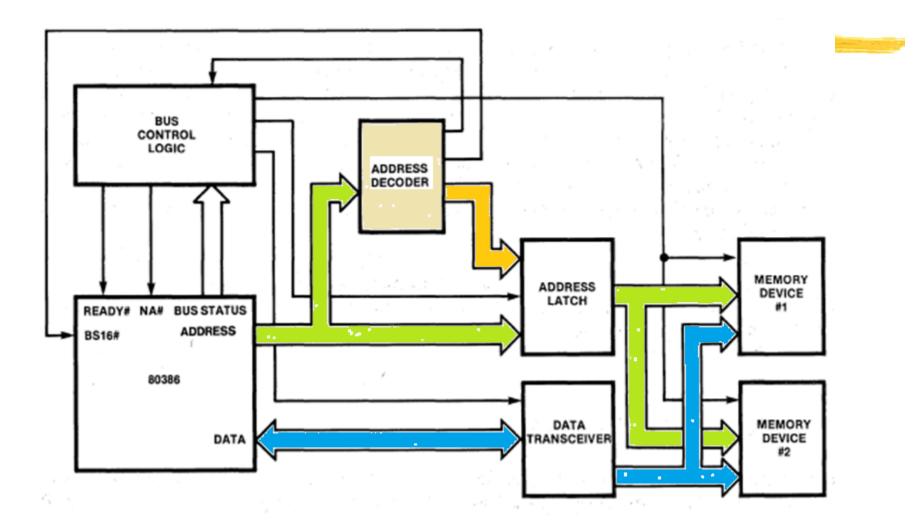


386 Micro-Architecture

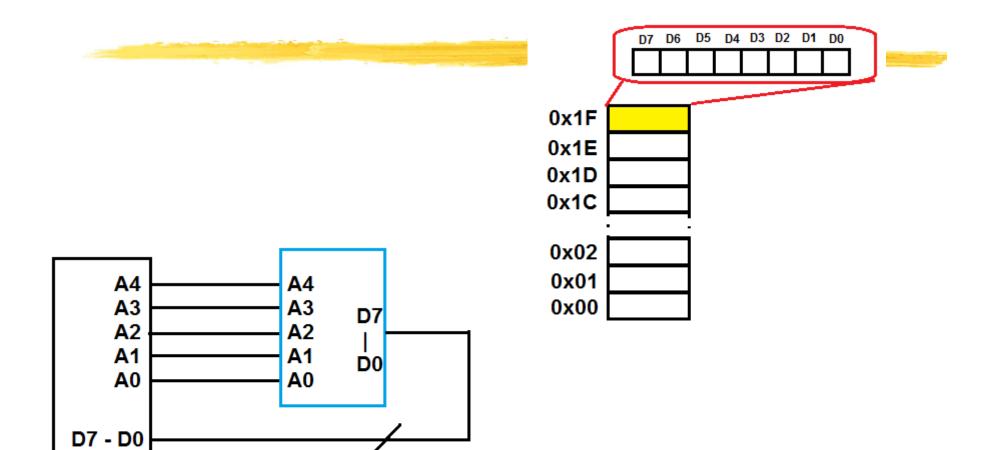


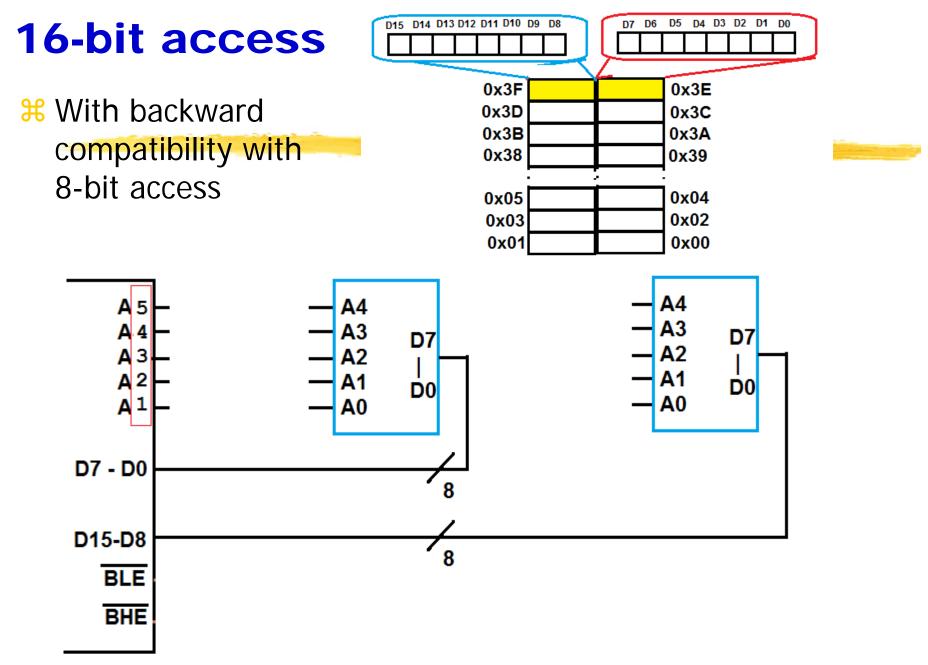
Intel386[™] SX Pipelined 32-Bit Microarchitecture

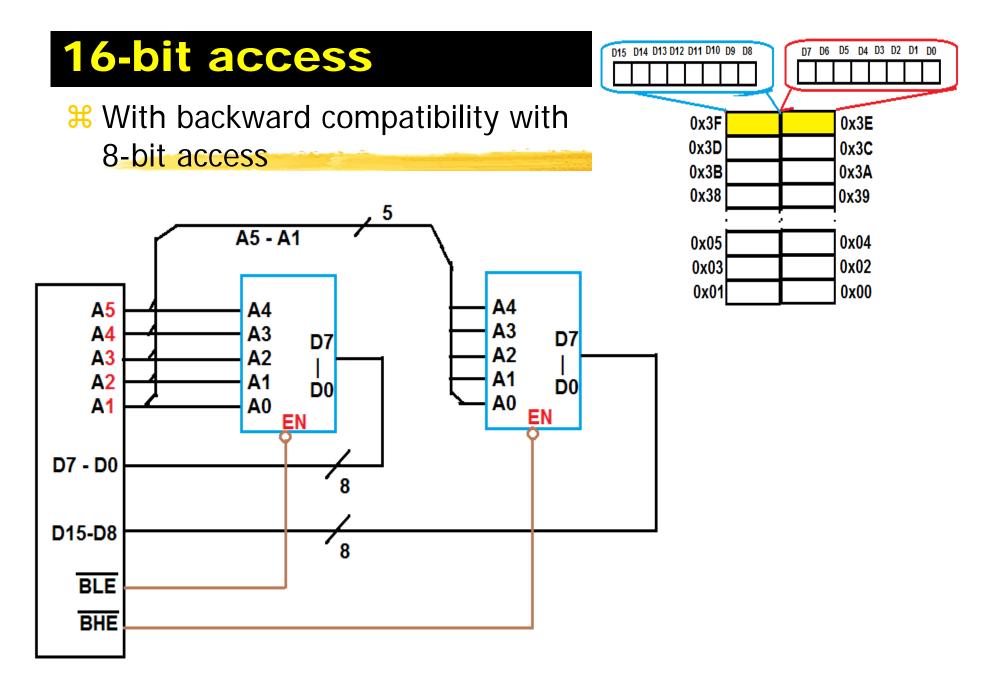
Connecting with Memory, I/O, and Peripherals



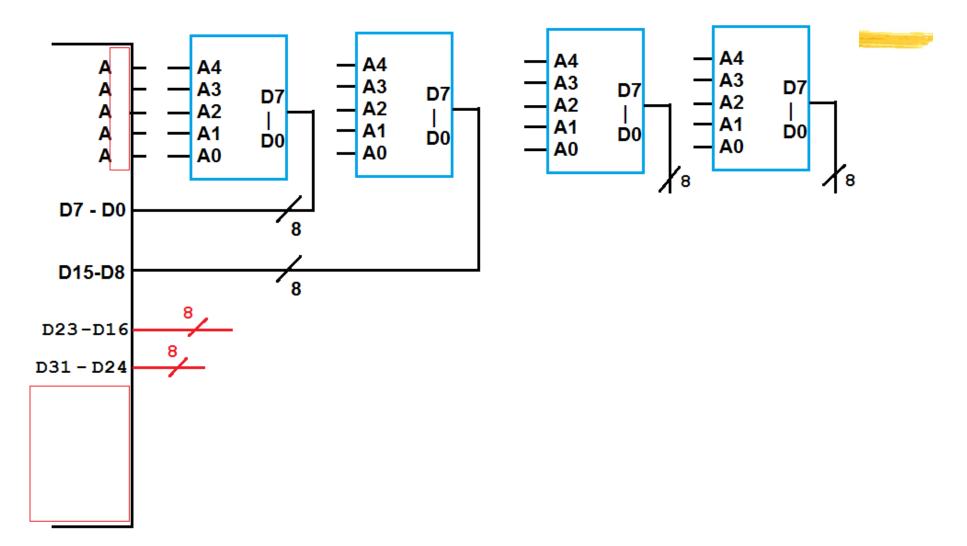
- Single Board Computers
- Processor Boards
- Kits


Memory Interface




Memory Interface

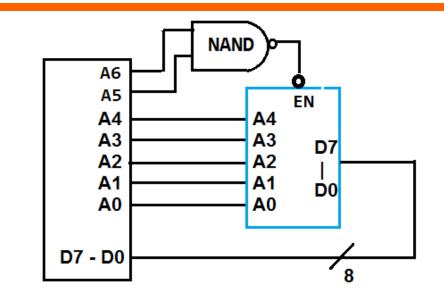
- Interface between a processor and a (pair) of memory (of smaller than the maximum memory space)
- ₩ Where do we place the memory in the memory space? → "MEMORY DECODING"
- How to access two MEM locations at the same time (for 16-bit Data bus)?
 MEM --- Byte Access (8 bits)
 UDS and LDS --- Motorola
 BLE and BHE --- Intel

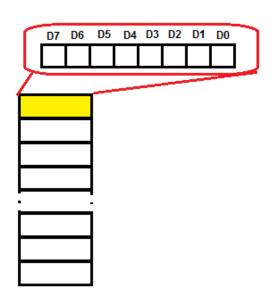

8-bit access



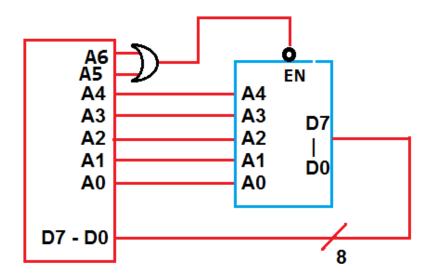
32-bit access with backward compatibility?

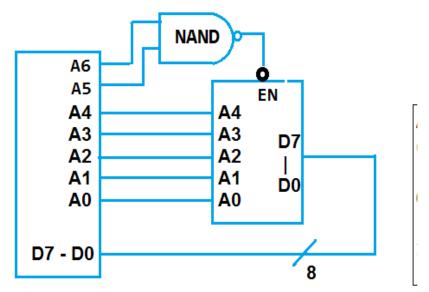


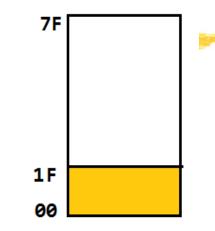

32-bit access with backward compatibility

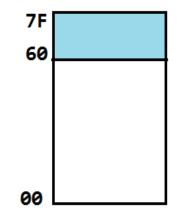


Memory Address 8

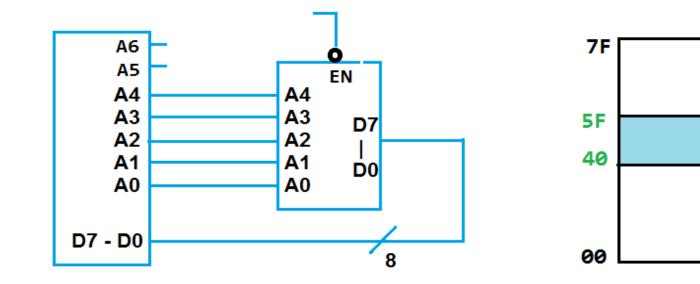

∺Address location (first and last addresses)?

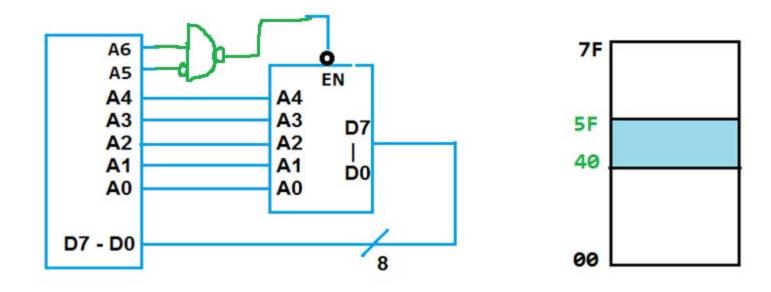




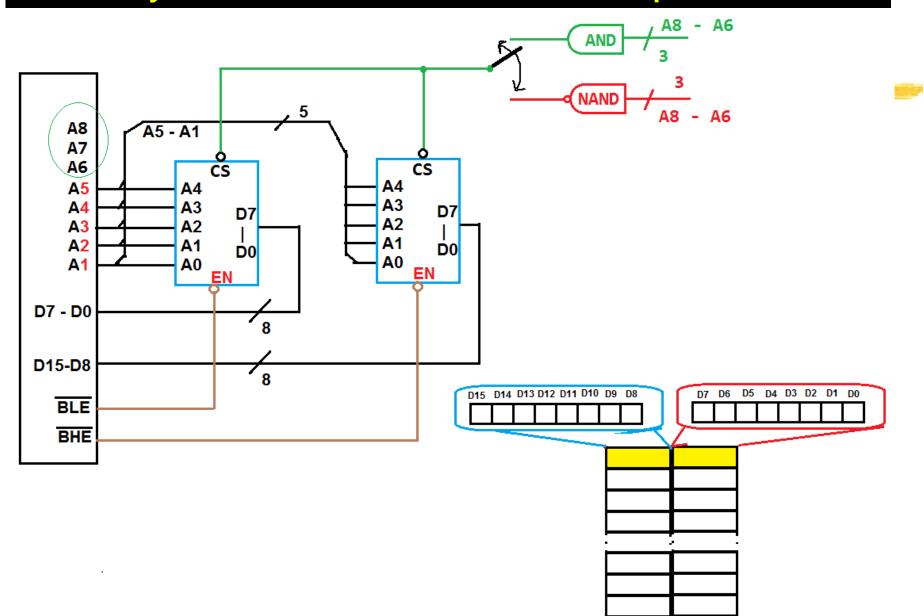


Memory Address 8

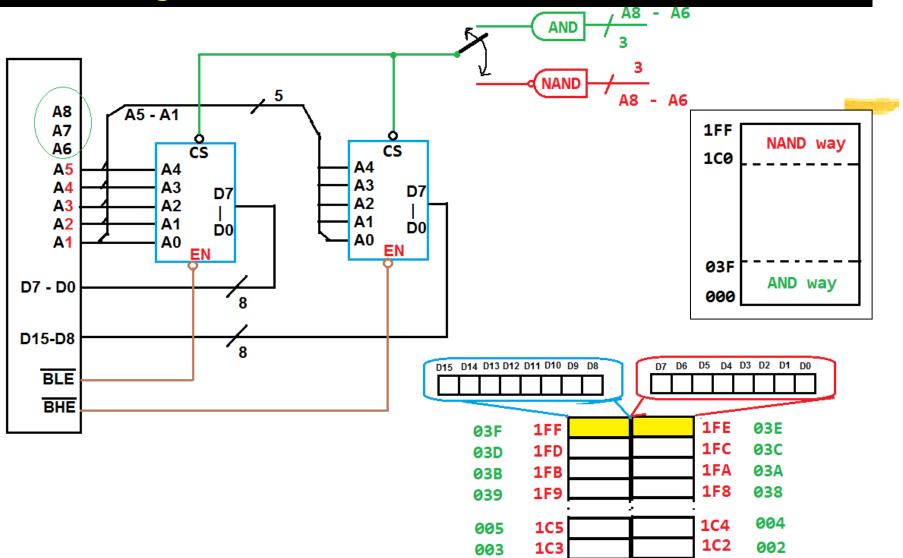



Memory Address 8 ---?

Consign a Memory Decoder so that the 32Byte memory locates as depicted.



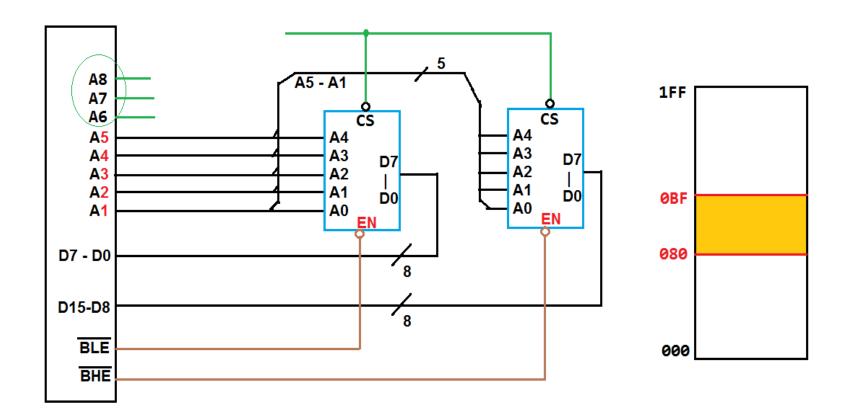
Memory Address 8 ---?


Control Con

Memory Address 16 – Address Space

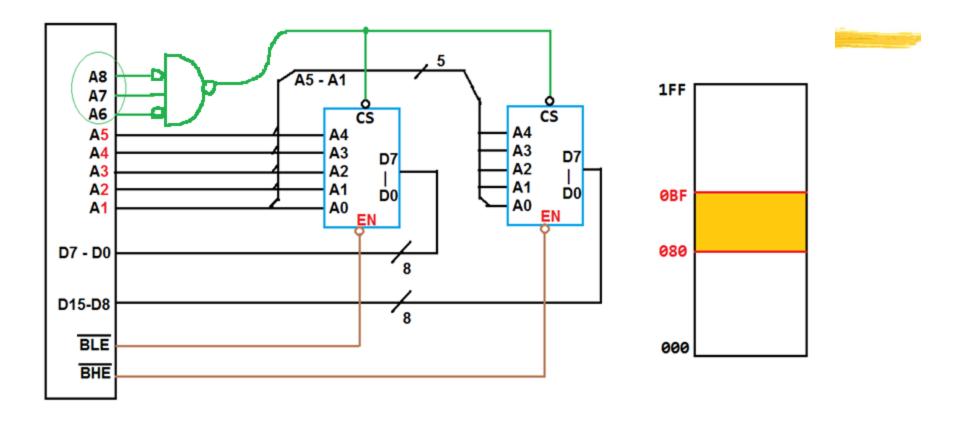
Memory Address 16

1C1

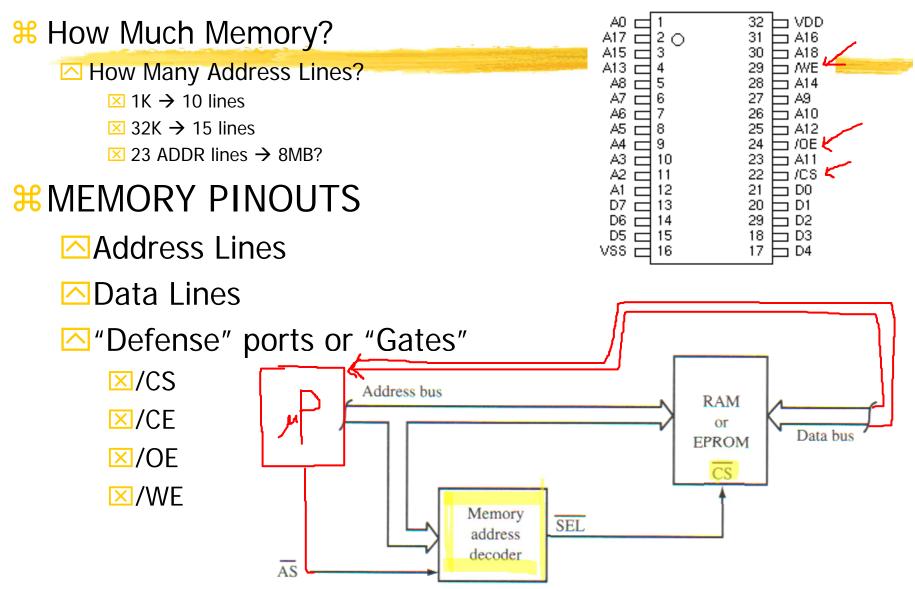

.

001

1C0

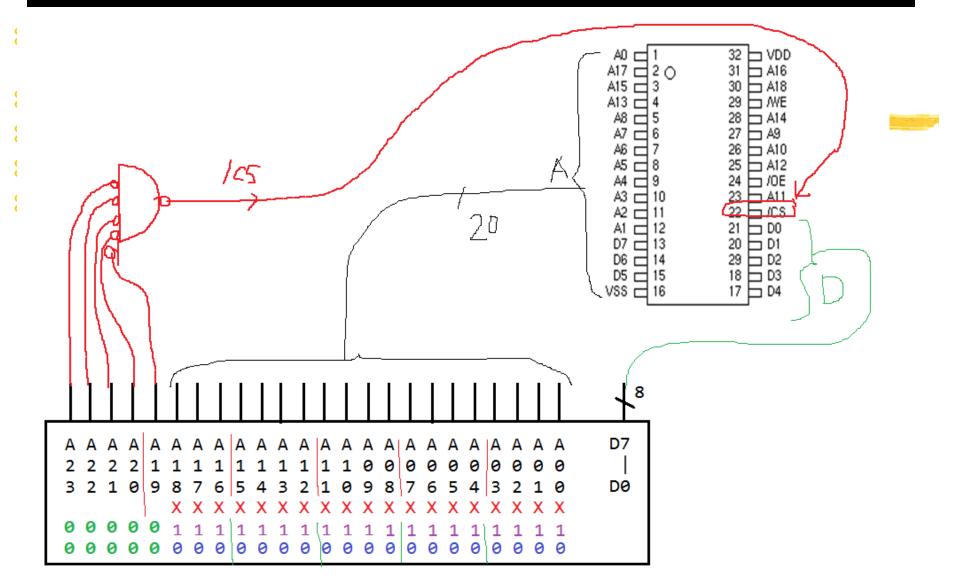

Memory Address 16 -- ?

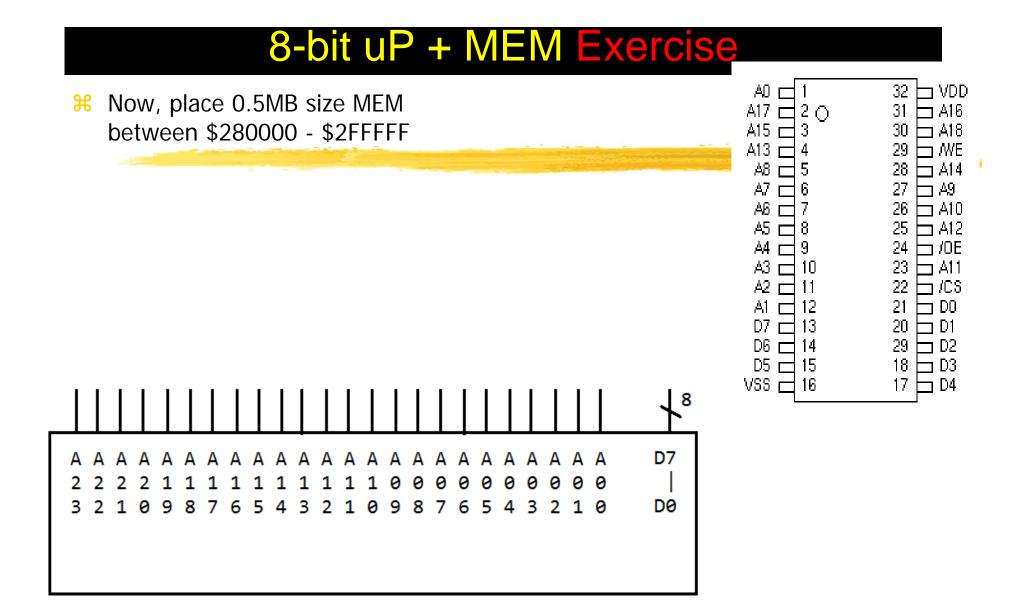
Design a memory decoder for the depicted address segment.



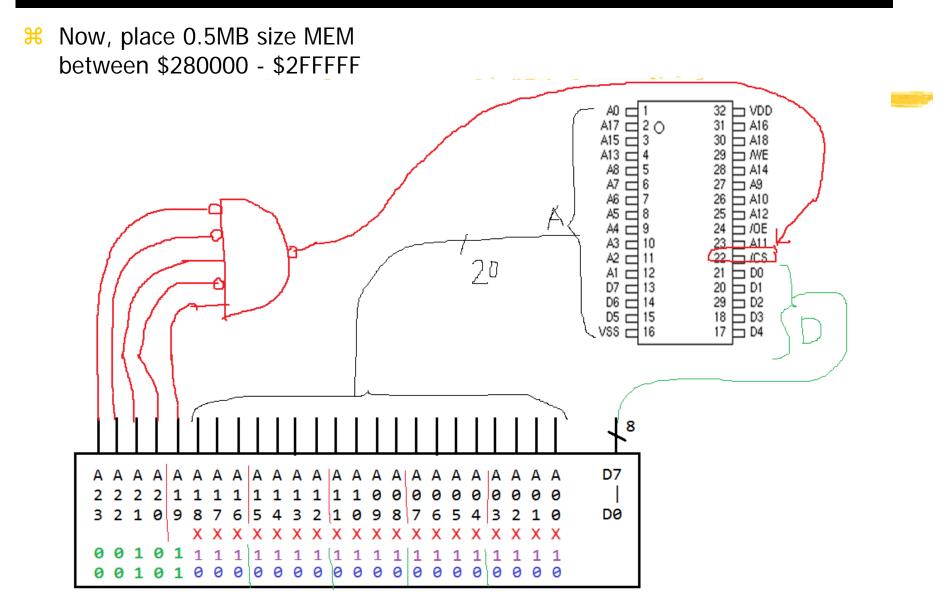
Memory Address 16 -- ?

Design a memory decoder for the depicted address segment.

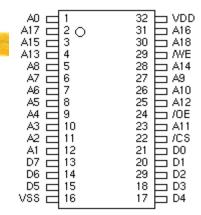

Memory Address Decoding

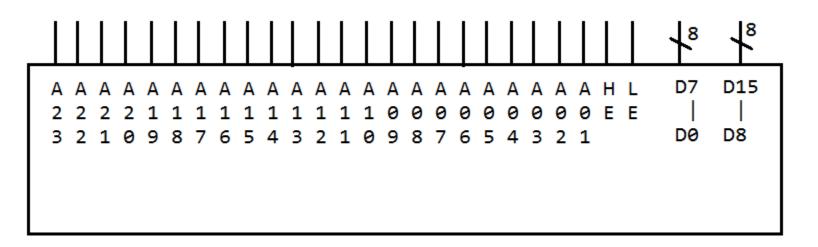


8-bit uP + MEM Exercise


H	uP has 2 ²⁴ =24MB=16MB memory space: 000000 - FFFFFF MEM has 2 ¹⁹ =0.5MB	A0 1 A17 20 A15 3 A13 4	32 DVDD 31 A16 30 A18 29 WE
ж ж ж		A8 5 A7 6 A6 7 A5 8 A4 9 A3 10 A2 11 A1 12 D7 13 D6 14 D5 15 VSS 16	28 A14 27 A9 26 A10 25 A12 24 //OE 23 A11 22 //CS 21 D0 20 D1 29 D2 18 D3 17 D4
	A A A A A A A A A A A A A A A A A A A	▶	

8-bit uP + MEM Exercise

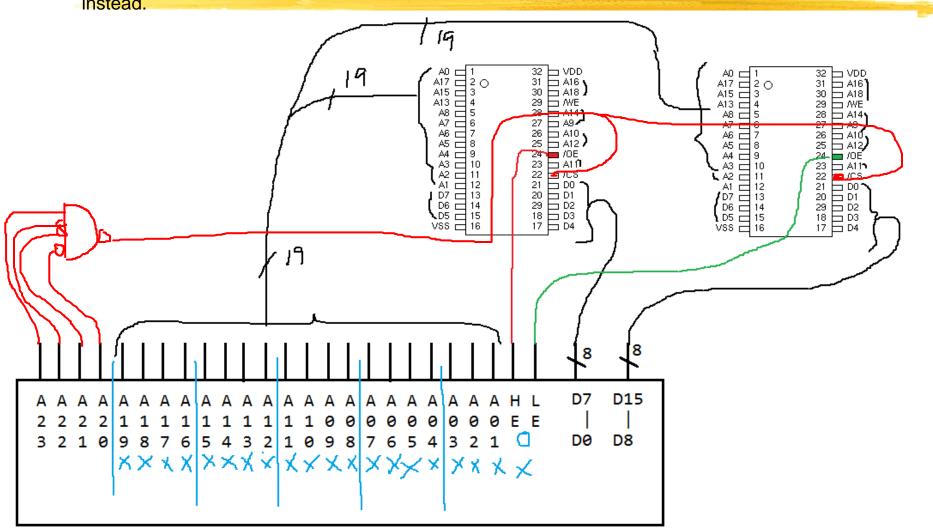

8-bit uP + MEM Exercise



16-bit uP + MEM

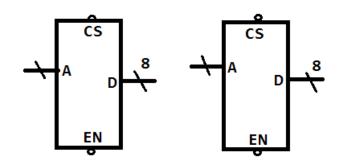
- # uP does not have A0
 - BHE (UDS) and BLE (LDS), instead.
- µP Addr ← → MEM Addr
 - △ A19 A1 (uP): A18 A0 (MEM)
 - △ Left-Over Addr (uP): A23- A20
 - BHE and BLE controls which MEM (or ADDRESS LOCATION) to access
 - BHE LOW: Upper MEM (upper or odd address location)
 - BLE LOW: Lower MEM (lower or even address location)
 - Both BHE amd BLE low: both address locations

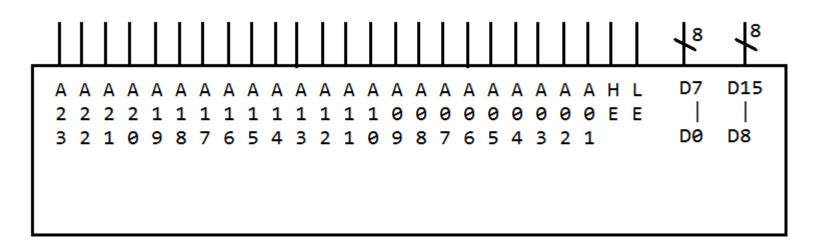
A0 A17	1 2 O	32 31		
A15	3	30		and the second second second
A13 A8	4	29 28		
A7 🗆	6	27	E A9	
A6	7	26	EÃ10	
A5 🖂	8	25	E A12	
A4 🗖	9	24	⊟ /0E	
A3 🗖	10	23	🗖 A11	
A2 🗖	11	22	⊨ /cs	
A1 🗆	12	21		
D7 🗆	13	20	Þ <u>01</u>	
D6 🗆	14	29		
	15	18		
VSS 🗖	16	17	⊨ D4	



16-bit uP + MEM

- uP does not have A0 H
 - BHE (UDS) and BLE (LDS), $\overline{}$



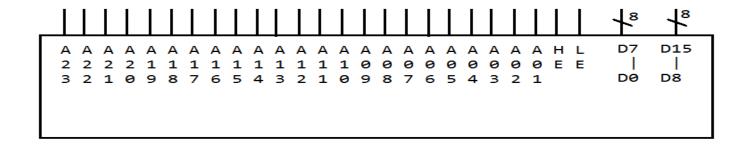


Memory Decoding

₩ Q: 64K Word (or 128 KB) of RAM, with it's starting address at \$480000

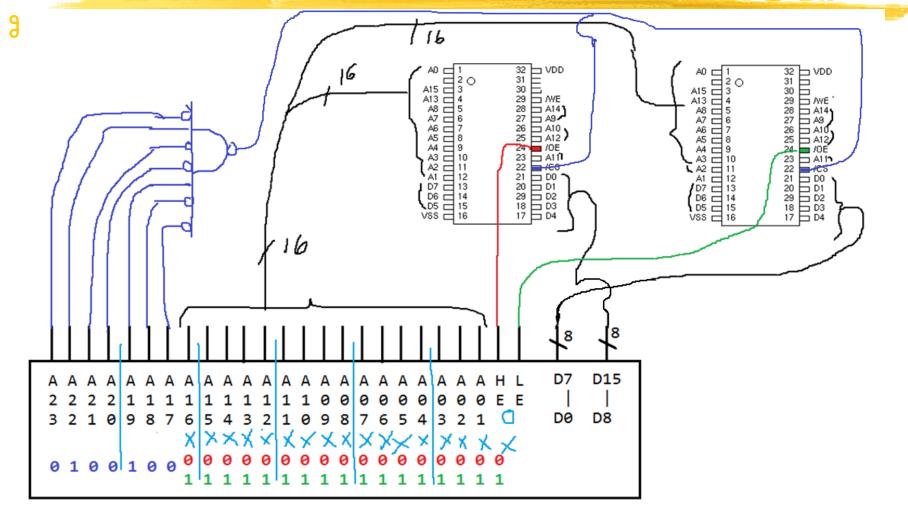
※ A: 64KB → 16 lines each MEM
△ Range: \$480000 - \$49FFFF
△ BHE and BLE for A₀ line → Enable
△ Upper address lines → CS for both MEM




Memory Decoding ----- Name_

₩ Q: 64K Word (or 128 KB) of RAM

 \Re A: 64KB \rightarrow 16 lines each MEM


Range: \$480000 - \$49FFFF

Memory Decoding

₩ Q: 64K Word (or 128 KB) of RAM, with it's starting address at \$480000

Apple Macintosh Classic

- CPU: 8MHz Motorola 68000
- Hintroduced in 1984
- Hemory: 128KB (512KB in later version) RAM, 64KB ROM
- 3.5" 400KB Floppy Disk
- Herein Content and MacPaint Representation Application: MacWrite and MacPaint

At a Glance

Name

Macintosh

Manufacturer

(408) 996-1010

Dimensions

Weight

lbs.

model

Apple Computer

20525 Mariani Ave.

Cupertino, CA 95014

9.75 by 9.75 by 13.5 inches

Power Requirements

Main unit, keyboard and mouse-22.7

105-130 V AC, 60 Hz (U.S. model); 85-135 V AC, 50/60 Hz (international

- ₭ Mouse
- ₩ 9" B&W Monitor
- ₭ Keyboard
- ₭ Serial Port (DB-9)
- Printer Port
- ₭ Addressing: 24-bit

Memory

128K bytes of RAM, 64K bytes of ROM Standard Configuration Main unit with 128K bytes of RAM, 64K

bytes of ROM, integral Sony 3½-inch disk drive, 9-inch video monitor, two serial ports; external mechanical mouse; external keyboard

Mass Storage

One Sony 3¹/₂-inch disk drive; 3¹/₂-inch disk holds 400K bytes and is encased in a rigid plastic housing

Video Display

9-inch monitor, noninterlaced 60.15-Hz image, 512- by 342-pixel resolution

Pointing Device Mechanical mouse

Keyboard

Detached keyboard; 58 keys (59 in international version); autorepeat; two-key rollover

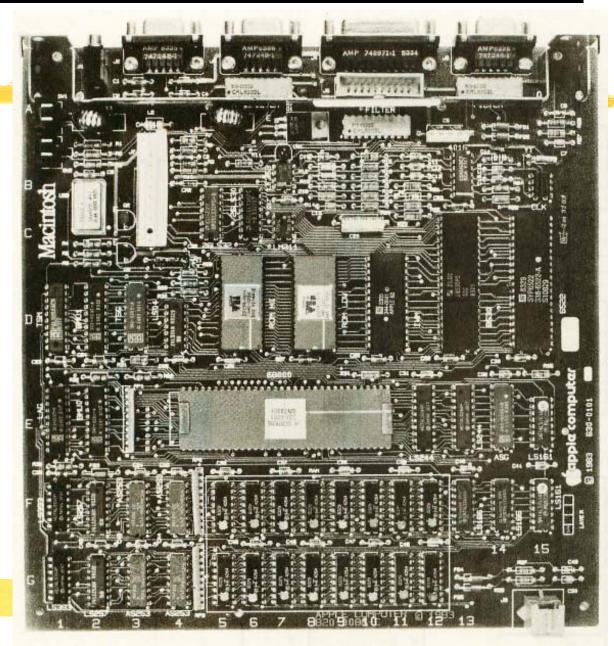
Hardware Options

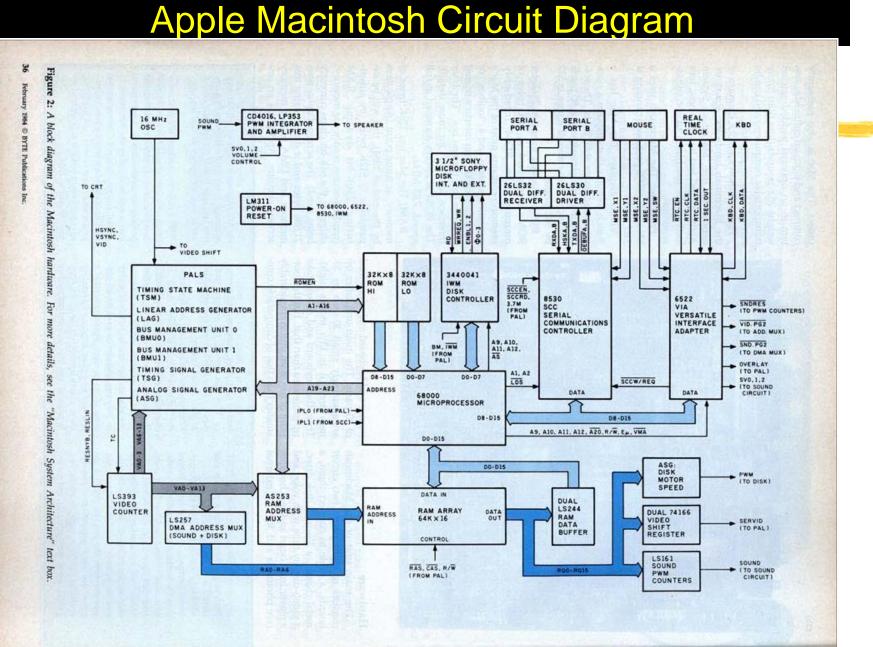
Second disk drive, keypad, Imagewriter printer, security kit (for chaining computer to table)

Software Options

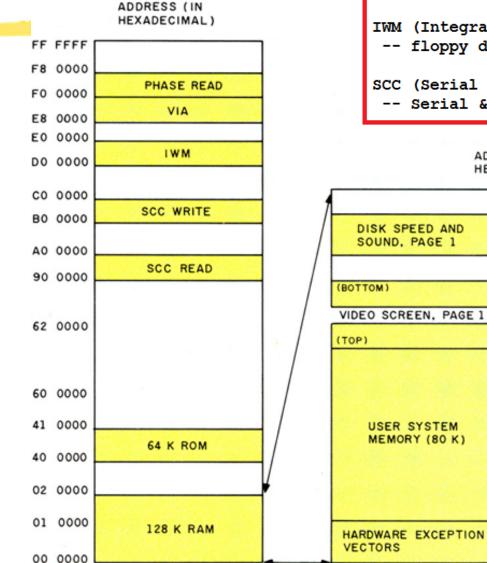
Mac Paint (drawing program), Mac Write (a simple word processor), Mac BASIC, Mac Pascal, others (see text)

Prices


Standard system, \$1995-\$2495; Mac Paint and Mac Write (together), bundled at no charge for the first 100 days, \$195 (for the two) thereafter; Macintosh Pascal, BASIC, Logo, Terminal, and Assembler/Debugger, \$99 each; Mac Draw and Mac Project, \$125 each; keypad, \$99; second disk drive, \$395; Imagewriter printer, \$495


Apple Macintosh Classic

- ₭ CPU: 8MHz Motorola 68000
- Hemory: 128KB (512KB in later version) RAM, 64KB ROM


The product-design goals of small size, light weight, and moderate end-user cost encouraged us to create a low-power, low component-count design.

Macintosh System Architecture by Burrell C. Smith

Memory Map (for Apple Macintosh)

VIA(Versatile Interface Adapter) ---general I/O

IWM (Integrated Woz Machine)
-- floppy disk

ADDRESS (M

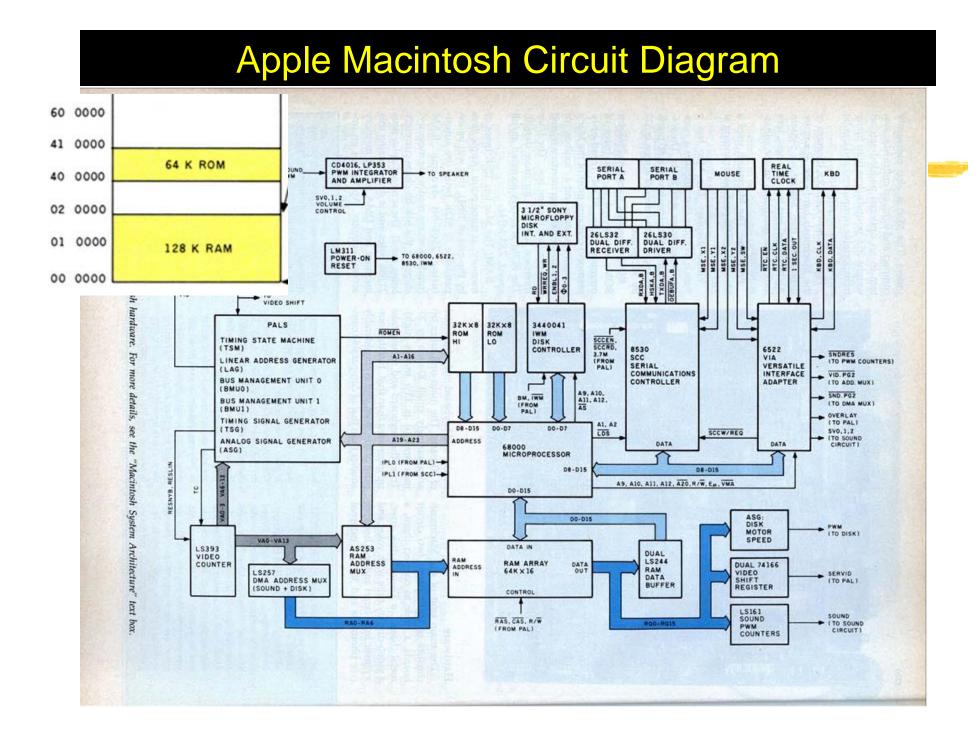
HEXADECIM

01 FFFF

01 FFE

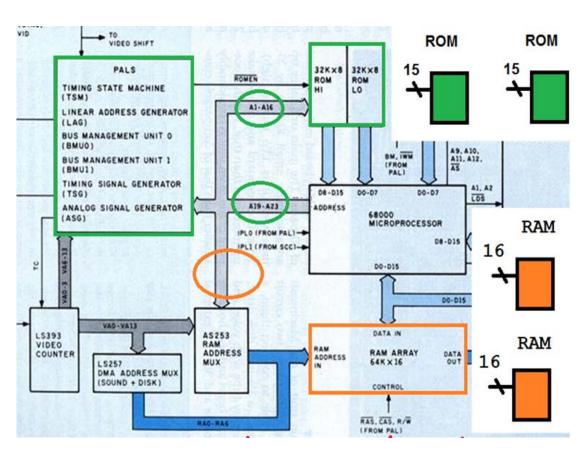
01 F00

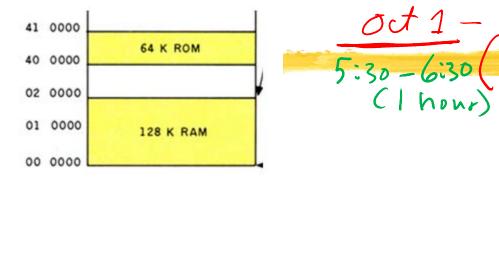
01 FC/

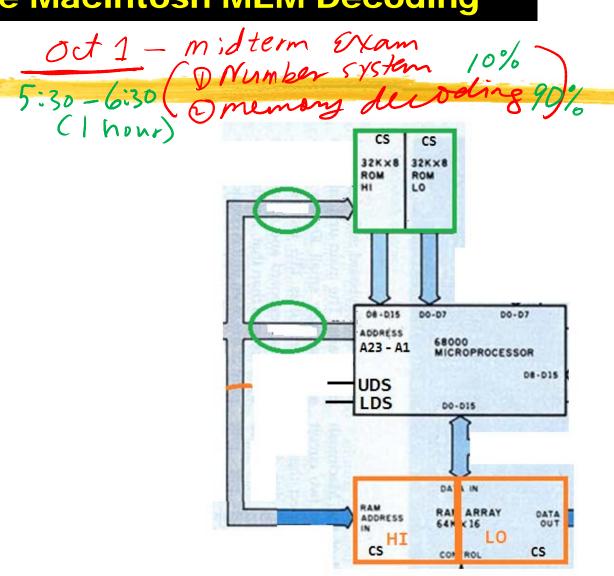

01 A700

00 0100

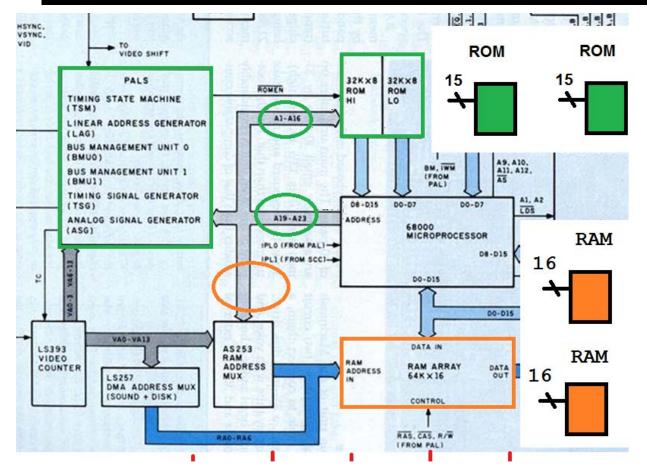
00 000


SCC (Serial Communications Controller)
-- Serial & Mouse

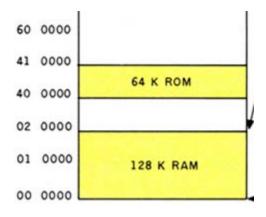



Apple Macintosh MEM Decoding

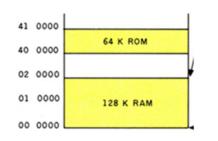
Burrell was working in Apple's service department when he helped Bill Atkinson add more memory to an Apple II computer in an innovative fashion. Bill recommended him to Jef Raskin, who was looking for a hardware engineer to help him with his newly formed Macintosh project.^[1] As a member of the design team,^[2] Burrell designed five different motherboards during the course of Macintosh development, all of which used techniques based on Programmable Array Logic (PAL) chips to achieve maximum functionality with a minimal chip count.

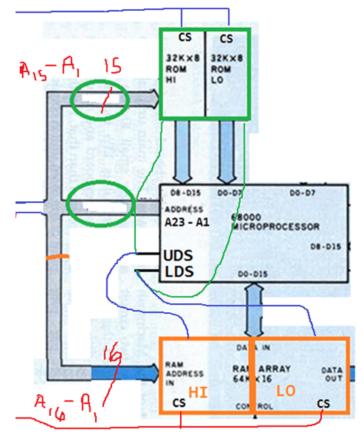


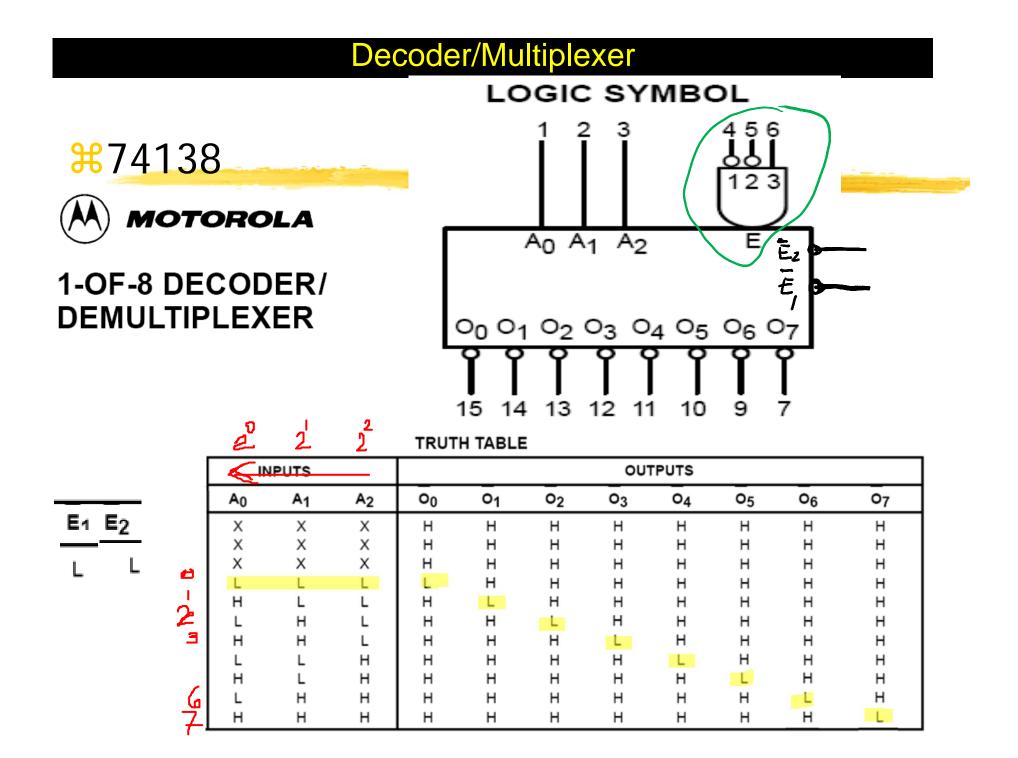
Design for Apple Macintosh MEM Decoding

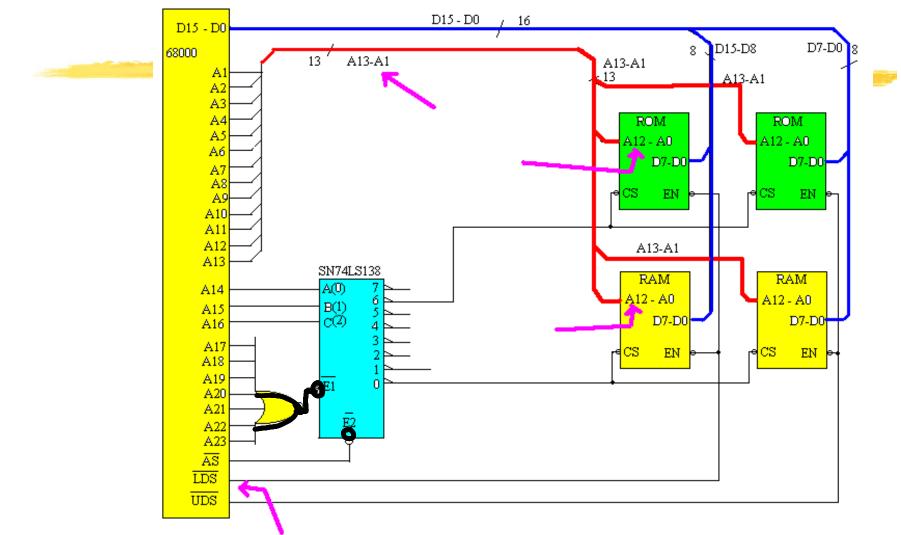


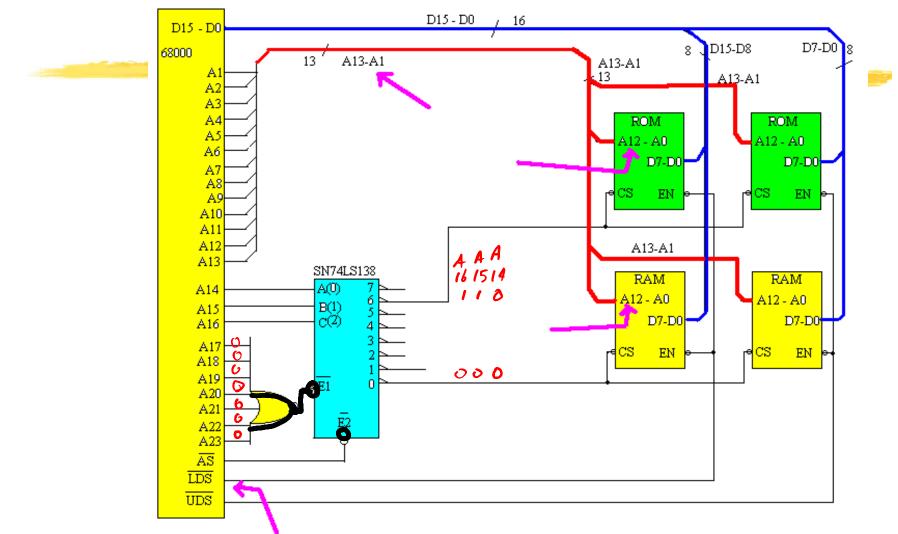
Apple Macintosh MEM Decoding






Design for Apple Macintosh MEM Decoding

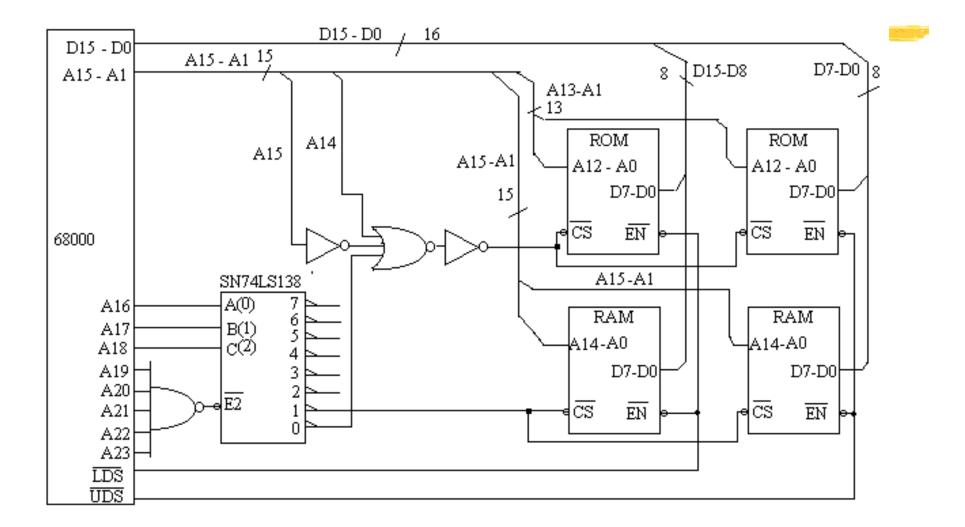




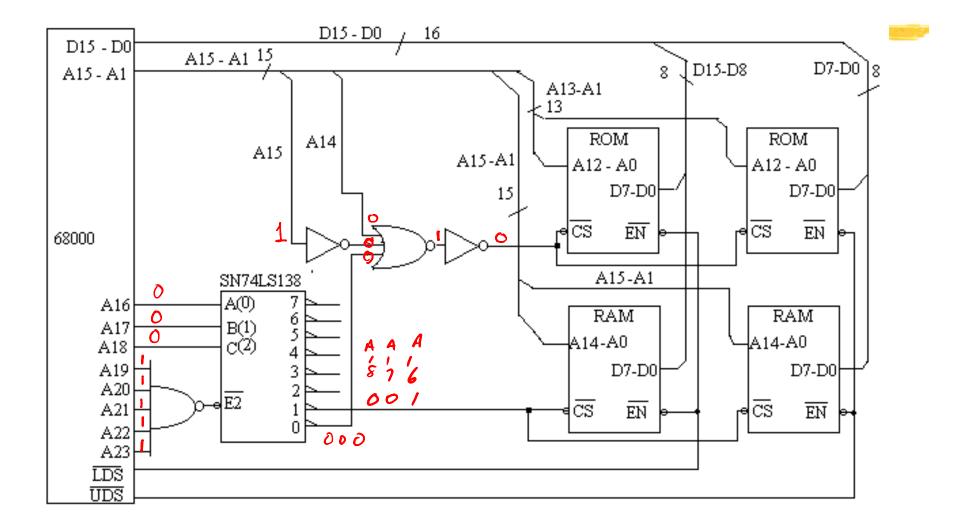
Memory Decoding with Byte/Word Access

- **H** Questions:
 - △ 1. Size of ROM
 - 2. Size of RAM
 - 🔼 3. Memory Map

Memory Decoding with Byte/Word Access - SOLUTION


- **H** Questions:
 - △ 1. Size of ROM
 - 2. Size of RAM
 - 3. Memory Map

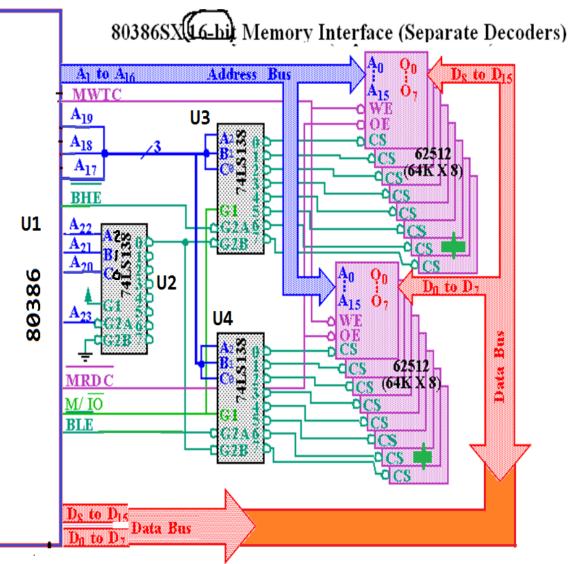
Solution 2


Rom (Left):
$$2^{13} = 2^3 \cdot K = 8 \times B$$
 (Upper Byte)
Rom (Right): $8 \times B$ (Lower Byte)
RAM (Left): $8 \times B$ (Upper Byte)
RAM (Right): $8 \times B$ (Upper Byte)
 $\overline{E} = A23 \sim A17 = 0$ [MEM SEL]
 $0 \leftarrow A16 \sim A14 = 0$ [RAM]
 $0 \leftarrow A16 \sim A14 = 0$ [RAM]

\$ 000 000 00 3 FFF \$ 018000 \$ 018000 \$ 018000 \$ 018000 \$ 018000 \$ 018000 \$ 018000 \$ 018000 \$ 018000 \$ 018000 \$ 018000 \$ 018000 \$ 0000 \$ 00000 \$ 0000000 \$ 00000 \$ 0000000 \$ 0000000 \$ 00000 \$ 000000 \$ 0000000 \$ 000

Can You Draw a Memory Map of this?

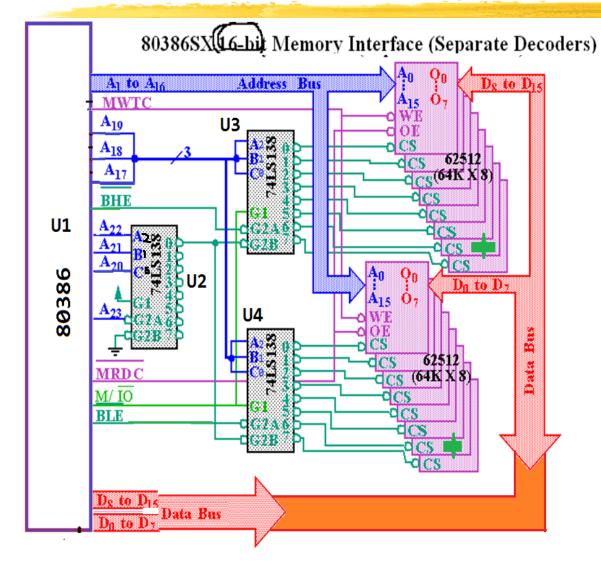
Can You Draw a Memory Map of this? - SOLUTION



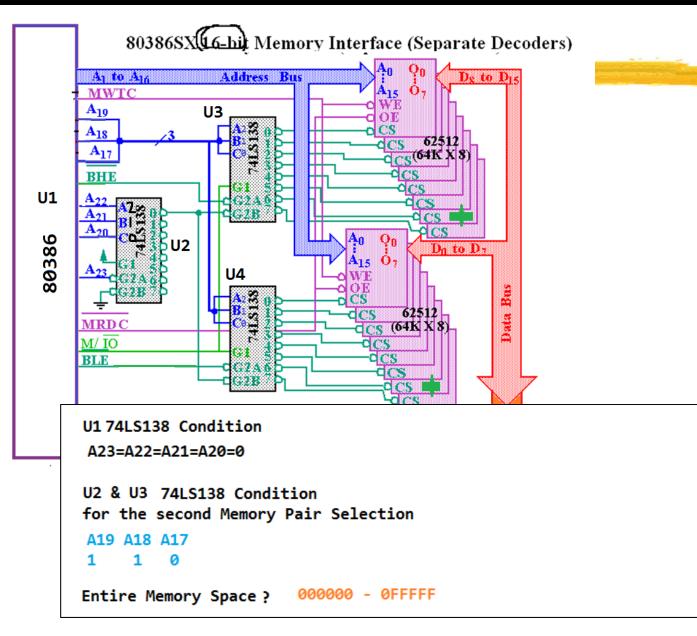
Solution 3

RAM
$$\{2^{15} = 32 \times B^{3}\} \times 2 \rightarrow 64 \times B$$

ROM $\{2^{13} = B \times B^{3} \times 2 \rightarrow 16 \times B$
 $\langle \text{MEM SELECTION} \rangle$
 $\bigcirc \overline{E_{2}} : A^{23} \sim A^{19} = 1$ ($\overline{E_{N}}$)
 $\bigcirc \overline{C_{3}} \text{ for } RAM$ (1): $A^{18}=0, A^{17}=0, A^{16}=1$
 $\bigcirc \overline{C_{3}} \text{ for } ROM [complex]: A^{18}=0, A^{17}=0, A^{16}=0$
 $A^{14}=0$
 $A^{15}=1$
RAM


Intel 80386 Memory – Decoding – Quiz

- A pair of memory pack (High and Low bytes) Eight (8) 64KB Memory Chips
- At each pack, each memory chip is SELECTED (/CS) by an output from U3 (High Byte) and U4 (Low Byte), which are enabled by the single output from U2.
- **Question**: Find the address range of the second chip of the pair of memory pack. (Green Mark)
- Ignore MWTC and MRDC, M/IO lines (they are for Write, Read, Memory or I/O operations, respectively)



Intel 80386 Memory – Decoding – Quiz

- Find the address range of the second chips of the memory pair. (Green Mark)
- **K** Quiz: Individual Work (Name:_

Intel 80386 Memory – Decoding – Class Activity

90