
Assembly Language Programming:

Procedures

EECE416 uC

Charles Kim
Howard University

Fall 2013

www.mwftr.com

Before we start
• Schedule of the next few weeks

– T Nov 19: Procedure and Calls (continued)
– R Nov 21: Coding Project Due
– R Nov 21: Intel Atom/FPGA Board
– T Dec 03: Presentation + Demo (for Microcontrollers)

– R Dec 05: Final Exam
• Subjects related to all class activities since Exam01

– Mul/imul, Div/idiv, Branching, Loop, and Procedure

• Code reading Flowchart Description
• Description flowchart Code writing
• Coding similar to the GCD practice
• Terminologies of Intel Atom/FPGA board

Procedure Calling and Stack
• 3 concepts:

– How to transfer control from a calling [main]
program to a procedure and back

– How to pass parameter values to a procedure
and results back from the procedure

– How to write procedure code that is
independent of the calling program.

• Hardware stack is used to accomplish
each of the above jobs.

• Focus on 32-bit mode only

80x86 Stack
• Hardware Stack

– Allocated with directive, for example
.STACK 4096
allocates 4096 uninitialized memory bytes

– ESP holds the address of the “first byte
above” the 4096 bytes in the stack

– Most access is indirect, through the stack
point register ESP

• Operating system initializes ESP to point to byte
above stack

• As program executes, it points to the last item
pushed on the stack

– “Top” of stack is at the highest address
– Stack grows toward lower address

Push Instruction
•Usual format: push source

–source can be memory, register or immediate
–doubleword or word pushed on the stack

•ESP decremented by size of operand
•Operand stored in stack where ESP points after being decremented
•Flags not changed
•By Push, stack point goes lower (“grows”) in address (ESP)
•Push/Pop from the Stack Pointer (ESP register)

Push Example
• Pushd --- double size operand
• Pushw --- word size operand

EAX and ESP contents

After PUSH

After pushd

pop Instruction and Execution
• Usual format: pop destination

– doubleword destination can be memory or register
• Operand stored in stack where ESP points is copied to

destination
• ESP incremented by size of operand after the value is

copied

Pop Example

Pushfd and popfd

• pushfd pushes EFLAGS register contents onto
stack

• popfd pops doubleword from top of stack into
EFLAGS

Push Pop Illustration (Analogy)
• For the usual double-word operation
• Top is higher in address than bottom

Example (with original ESP=10001FF0)

Push Exercise
• Before

– [ESP]=06 00 10 00
– [ECX]=01 A2 5B 74

• After push ecx:
• After pushd 10:

– [STACK]= ?

Push – Practice (sub 1)
• Before:

– [ESP]=02 00 0B 7C
– [EBX]=12 34 56 78

• Stack Diagram and [ESP]
– After pushd 20
– After push ebx

Push-Pop Practice (sub 2)
• Before:

– [ESP]=00 10 F8 3A
– [EAX]=12 34 56 78

• Stack Diagram, [EAX], [EBX], & [ESP]
– After

•Push eax
•Pushd 30
•Pop ebx
•Pop ecx

Procedures with Value Parameters

• Main program call(s) a procedure
• Main Program transfers the parameter values
• Procedure receives (retrieves) them
• Procedure may do a task or it may return a value

– value-returning procedure is sometimes called
a function

Procedure in Coding
• In a code segment with body statements bracketed by PROC and

ENDP directives giving procedure name
.CODE
procName PROC
; procedure body

...
procName ENDP

• Transfer Control to a Procedure
– In the “main” program, use

call procName
– The next instruction executed will be the first one in the procedure

• Returning from a Procedure
– In the procedure, use

ret
– The next instruction executed will be the one following the call in

the “main” program

How Call/Ret Works
• Call:

– The address of the instruction EIP following the call is pushed
on the stack (so ESP has grown by 4 --- ESP address is
lowered by 4) [Equivalent to Push EIP]

– The instruction pointer register EIP is loaded with the address of
the first instruction in the procedure

• Ret:
– The doubleword on the top of the stack is popped into the

instruction pointer register EIP (so ESP has decreased by 4 ----
ESP address is increased by 4) [Equivalent to Pop EIP]

– this is the address of the instruction following the call, that
instruction will be executed next

– If the stack has been used for other values after the call, these
must be removed before the ret instruction is executed

Alternative Ret Format
• ret n

• n is added to ESP after the return address is
popped

• This is most often used to logically remove
procedure parameters that have been pushed
onto the stack
– Used in Stdcall Protocol

• Protocol?
– Transfer of control from calling program to procedure and back
– Passing parameter values to procedure and results back from the

procedure
– Having procedure code that is independent of the calling program

Procedure protocols for Stack Clean-Up
• 2 Protocols for Procedure handling

– Cdecl (“C Declaration”) --- Caller Clean-Up
– Stdcall (“Standard Call”) --- Callee Clean-Up

“Clean-up” means move Stack Pointer back to the original position

Cdecl (“C Declaration”)
• Caller Clean-up convention
• used by many C systems for the x86 architecture.
• Default in Visual Studio --- Our Default !!
• Function parameters are pushed on the stack.
• Function return values are returned in the EAX register
• Registers EAX, ECX, and EDX are available for use in

the function.
• The calling program cleans the stack after the function

call returns

Stdcall
• Callee Clean-up Convention
• A variation on the Pascal calling convention
• Callee is responsible for cleaning up the stack

– Ret N
– N is added to ESP

• Parameters are pushed to the stack
• Registers EAX, ECX, and EDX are designated for use within the

function.
• Return values are stored in the EAX register.
• Standard calling convention for the Microsoft Win32 API.

Procedure Example – CallEX1.asm

LST file

Follow EIP, ESP, and Result

Post-Mortem:

Summary
MAIN CODE
1. Parameter values passed on the stack
2. Call a procedure (this pushes the return address in EIP to the stack)

PROCEDURE
1. Push EBP and Copy ESP to EBP (EBP becomes the reference for

retrieving the parameter values) – fixed location on the stack while ESP
may vary.

2. Push Register(s) if necessary
3. Retrieve Parameter values referenced to EBP
4. Do the functions
5. Pop the Register(s) if pushed
6. Pop EBP
7. Ret (this pops the return address to EIP)

MAIN CODE
1. Clean-up process (Add 4*N to ESP) --- N is the number of parameters

pushed before Call.

Alternative 32-bit Procedure Options

• Reference Parameters
– The address of the argument instead of its value is passed to the

procedure
– Reference parameters are used:

• To send a large argument (for example, an array or a
structure) to a procedure

• To send results back to the calling program as argument
values

• Passing an Address
– lea instruction can put address of an argument in a register,

and then the contents can be pushed on the stack (Load
Effective Address)
lea eax, minimum ;
push eax

PTR operator

• Register indirect mode:
– The register contains the location of the data

to be used in the instruction (not the data
itself)

– Example: add eax, [edx] ; when
source and desiination is known as
doublelword

» CF: add eax DOWRD PTR [edx]

– Example: mov [ebx], 0 ; ambiguous size.
Source - byte, word, etc?

–Mov BYTE PTR [ebx], 0

Procedure using Address Parameter - CallEx2.asm

DUP: DUP directive tells the assembler to duplicate an expression
a given number of times
ARR1 Byte 10 DUP (?); 10 uninitialized bytes
ARR2 DWORD 100 dup (0); 100 Dwords initialized as 0

Procedure using Address Parameter - CallEx2.asm

Procedure using Address Parameter - CallEx2.asm

LST File

LST file --- Procedure part

Follow EIP, ESP, and Result

Follow EIP, ESP, and Result - continued

