
x86 Assembly Programming
Part 3
EECE416 uC

Charles Kim
Howard University

Resources:
Intel 80386 Programmers Reference Manual

Essentials of 80x86 Assembly Language
Introduction to 80x86 Assembly Language Programming

WWW.MWFTR.COM

Last week activity - Review

Last week activity - Review

Multiplication Instruction - MUL

• MUL (Unsigned Integer Multiply)
– performs an unsigned multiplication of the source operand and

the accumulator [(E)AX].
– If the source is a byte

• the processor multiplies it by the contents of AL and returns the double-
length result to AH and AL (Concatenated) i.e, AX.

– If the source operand is a word
• the processor multiplies it by the contents of AX and returns the double-

length result to DX and AX concatenated.
– If the source operand is a double-word

• the processor multiplies it by the contents of EAX and returns the 64-bit
result in EDX and EAX (Concatenated). MUL sets CF and OF when the
upper half of the result is nonzero; otherwise, they are cleared.

– Operand cannot be immediate

MUL Opr/Store Summary

MUL - Exercise

IMUL (Signed Integer Multiply)
• performs a signed multiplication operation. IMUL has three

variations:
– 1. An one-operand form. The operand may be a byte, word, or

doubleword located in memory or in a general register. This instruction uses EAX
and EDX as implicit operands in the same way as the MUL instruction.

– 2. A two-operand form. One of the source operands may be
in any general register while the other may be either in
memory or in a general register. The product replaces the
general-register operand.

– The immediate operand is treated as signed. If the immediate
operand is a byte, the processor automatically sign-extends
to the size of destination before performing the
multiplication.

IMUL

MUL & IMUL Exercise

Division Instruction

• DIV (Unsigned Integer Divide)
– performs an unsigned division of the accumulator by the source

operand.
– The dividend (the accumulator) is twice the size of the divisor (the

source operand)
– the quotient and remainder have the same size as the divisor.

• IDIV (Signed Integer Divide)
– performs a signed division of the accumulator by the source operand.
– uses the same registers as the DIV instruction

DIV opr/store summary

DIV & IDIV (Q and R): BYTE divisor

• 0x0064 100
• 0x0D 13
• 100=Q*13+R =7*13+9

DIV & IDIV (Q and R) – WORD divisor

DIV & IDIV (Q and R): DWORD divisor -1

• 0x0000000000000064 100
• 0xFFFFFFF3 - 0xD - 13
• 100=Q*(-13)+R = (-7)*(-13)+9
• -7 0xFFFFFFF9 9 0x00000009

DIV & IDIV (Q and R): DWORD divisor -2

• 0xFFFFFFFFFFFFFF9C - 0x0000000000000064 -100
• 0x0000000D 13
• -100=Q*(13)+R = (-7)*(13)+(-9)
• Q=-7 0xFFFFFFF9 R=-9 0xFFFFFFF7

DIV vs IDIV: Summary

DIV & IDIV Exercise
• [1]
• 0x9A

154

• 154=10*15
+4

• Q 0x0A
• R 0x04

Manual Execution with IMUL and IDIV

• 32 0x20
• 32*9=288 0x120
• 0x120+2 0x122
• 0x122/0x5= 0x3A (ignore

Remainder)
• 0x3A+0x20 0x5A 90
• cf:

Boolean Operation Instruction
• AND, OR, XOR, and NOT
• NOT (Not)

– inverts the bits in the specified operand to form a one's complement of
the operand.

– a unary operation that uses a single operand in a register or memory.
– has no effect on the flags.

• AND: logical operation of "and“
• OR: Logical operation of “(inclusive)or”
• XOR: Logical operation of "exclusive or".
• AND, OR, XOR clear OF and CF, leave AF undefined, and update

SF, ZF, and PF.

Shift Instructions
• The bits in bytes, words, and doublewords may be

shifted arithmetically or logically, up to 31 places.
• Specification of the count of shift

– Implicitly as a single shift
– Immediate value
– Value contained in the CL (lower order 5 bits)

• CF always contains the value of the last bit shifted out of the
destination operand.

• In a single-bit shift, OF is set if the value of the high-order (sign) bit
was changed by the operation. Otherwise, OF is cleared.

• The shift instructions provide a convenient way to accomplish
division or multiplication by binary power.

SAL, SAR, SHL, SHR
• SAL (Shift Arithmetic Left) :

– Fill the right-most bit with 0

• SAR (Shift Arithmetic Right):
– Fill the left-most bit with the sign bit of the operand

• SHL (Shift Logical Left):
– Fill the left-most bit with 0

• SHR (Shift Logical Right):
– Fill the right-most bit with 0;
– Fill CF with the bit shifted out of the right.

Example

Example

Next topic ---- Cmp and Jump

