
x86 Assembly Programming
Part 2
EECE416 uC

Charles Kim
Howard University

Resources:
Intel 80386 Programmers Reference Manual

Essentials of 80x86 Assembly Language
Introduction to 80x86 Assembly Language Programming

WWW.MWFTR.COM

Reminder – Coding Assignment

Listing (.LST) File of Assembly Code (.asm)

Registers for x86

Basic Data Types

• Byte, Words (WORD),
Double Words (DWORD)

• Little-Endian
• Align by 2 (word) or 4

(Dword) for better
performance – instead
of odd address

Data Declaration

• Directives for Data Declaration and Reservation of
Memory
– BYTE: Reserves 1 byte in memory

• Example: D1 BYTE 20
D2 BYTE 00010100b
String1 BYTE “Joe” ; [4A

6F 65]

– WORD: 2 bytes are reserved
• Example: num1 WORD -10

num2 WORD FFFFH

– DWORD: 4 bytes are reserved
• Example: N1 DWORD -10

– QWORD: 8 bytes
• 64 bit: RAX RBX RCX ,etc
• 32 bit: EDX:EAX Concatenation for CDQ instruction

Instruction Format
• Opcode:

– specifies the operation performed by the
instruction.

• Register specifier
– an instruction may specify one or two

register operands.

• Addressing-mode specifier
– when present, specifies whether an operand

is a register or memory location.
• Displacement

– when the addressing-mode specifier
indicates that a displacement will be used to
compute the address of an operand, the
displacement is encoded in the instruction.

• Immediate operand
– when present, directly provides the value of

an operand of the instruction. Immediate
operands may be 8, 16, or 32 bits wide.

Register Size and Data
• Assuming that the content of eax is [01FF01FF],

what would be the content of eax after each
instruction?

eax:[]
eax:[]
eax:[]

• Further Example
• EAX: [01010101] before

mov al -10 ; EAX:[]
mov ax, -10; EAX: []
mov eax, -10; EAX: []

Exercise of Register Size and Data
• Example:

Before Instruction After
EAX: 01 1F F1 23 mov AX, -1 EAX: 01 1F FF FF

10

386 Instruction Set

• 9 Operation
Categories
– Data Transfer
– Arithmetic
– Shift/Rotate
– String Manipulation
– Bit Manipulation
– Control Transfer
– High Level Language

Support
– Operating System

Support
– Processor Control

• Number of operands:
0, 1, 2, or 3

Data movement Instructions
• MOV (Move)

– transfers a byte, word, or doubleword from the source
operand to the destination operand: R M. M R,
R R, I R, I M

– The MOV instruction cannot move M M or from SR
SR (segment register)

– M M via MOVS (string)
• XCHG (Exchange)

– swaps the contents of two operands.
– swap two byte operands, two word operands, or

twodoubleword operands.
– The operands for the XCHG instruction may be two

register operands, or a register operand with a
memory operand.

Data type Conversion Instructions
• CBW (Convert Byte to Word)

– extends the sign of the byte in register AL
throughout AX.

• CWDE (Convert Word to Doubleword
Extended)

– extends the sign of the word in register
AX throughout EAX.

• CWD (Convert Word to Doubleword)
– extends the sign of the word in register

AX throughout register DX
– can be used to produce a doubleword

dividend from a word before a word division
• CDQ (Convert Doubleword to Quad-Word)

– extends the sign of the doubleword in
EAX throughout EDX.

– can be used to produce a quad-word
dividend from a doubleword before
doubleword division.

• MOVSX (Move with Sign Extension)
– sign-extends an 8-bit value to a 16-bit value

and a 8- or 16-bit value to 32-bit value.
• MOVZX (Move with Zero Extension)

– extends an 8-bit value to a 16-bit value and
an 8- or 16-bit value to 32-bit value by
inserting high-order zeros.

Addition Instruction
• ADD (Add Integers)

– (DST + SRC) DST
– replaces the destination operand with the sum of the source and

destination operands. OF, SF, ZF, CF are all affected.
• ADC (Add Integers with Carry)

– (DST + SRC + 1) DST (if CF=1)
– (DST + SRC) DST (if CF=0)
– sums the operands, adds one if CF is set, and replaces the destination operand with the

result. If CF is cleared, ADC performs the same operation as the ADD instruction. An ADD
followed by multiple ADC instructions can be used to add numbers longer than 32 bits.

• label mnemonic dst, src

Flags
• SF (Sign Flag): 1 (neg) 0 (pos)
• ZF (Zero Flag): 1 (result is zero) 0 (otherwise)
• CF (Carry Flag)

– If the sum of two numbers is one bit longer than the
operands, the extra 1 is a carry (or carry out) CF=1

• A 1 carried into the high-order (sign, leftmost) bit position during
addition is called a carry in.

– CF=1 for borrow (or no carry) in subtraction.

Flags
• OF (Overflow flag)

– OF=1 when there is a CARRY IN but no CARRY OUT
– OF=1 when there is a CARRY OUT but no CARRY IN
– If OF=1, result is wrong when adding 2 signed numbers

• Example
483F + 645A AC99
Carry In but no Carry Out

OF=1
No Carry Out CF=0

• Interpretation:
– If the operation is for unsigned number addition Correct
– If the operation is for signed numbers Incorrect

Status Flags in Console32
• EFL=00 00 02 46 (after mov eax, number)

Status Flags in Console32
• EFL=00 00 02 17 (after add eax, 158)

SUB (Subtract Integers)
• SUB:

– Operation: (DST – SRC) DST
– subtracts the source operand from the destination operand and

replaces the destination operand with the result. If a borrow is
required, the CF is set. The operands may be signed or unsigned
bytes, words, or doublewords.

• SBB (Subtract Integers with Borrow)
– DST – SRC (if CF=0)
– DST – 1 (if CF=1)
– subtracts the source operand from the destination operand, subtracts 1 if CF is set, and

returns the result to the destination operand. If CF is cleared, SBB performs the same
operation as SUB. SUB followed by multiple SBB instructions may be used to subtract
numbers longer than 32 bits.

• label mnemonic dst, src

ADD & SUB Examples

• SUB [dst] – [src]

SF: Sign Falg
ZF: Zero Flag
CF: Carry Flag
OF: Overflow Flag

Add, Sub, and Flag Practice

INC & DEC
• INC (Increment)

– DST +1 DST
– adds one to the destination operand. INC does not affect CF. Use ADD

with an immediate value of 1 if an increment that updates carry (CF) is
needed.

• DEC (Decrement)
– DST – 1 DST
– subtracts 1 from the destination operand. DEC does not update CF. Use SUB

with an immediate value of 1 to perform a decrement that affects carry.

INC + DEC examples

CMP + NEG
• CMP (Compare)

– DST – SRC
– subtracts the source operand from the destination operand. It updates OF, SF,

ZF, AF, PF, and CF but does not alter the source and destination operands.

• NEG (Negate)
– 0 – DST DST
– subtracts a signed integer operand from zero. The effect of NEG is to

reverse the sign of the operand from positive to negative or from negative to
positive (i.e., 16’s complement)

– SF and ZF are affected

NEG Examples

MOVE

Arithmetic

Logic +

Jump

Manual execution practice
• Contents and Flags (CF, ZF, SF, and OF)
• Initially, CF=ZF=SF=OF=0
• Initially, EAX=EBX=00000000

