EECE416 :Microcomputer Fundamentals and Design

X86 Assembly Programming
Part 1

Dr. Charles Kim

Department of Electrical and Computer Engineering

Howard University

www . MWFTR . com

X86 Architecture

First x86 Family s el

] o
EATY m I ADS
amig]s 38 816,53
member: 8086
[] D s 36 A18,55
Apios 35 aie/56
7
a

)

Ane 34 [0 BRE/S7 e euTiON Ut .]
8088 I 9 7 8 Ans 33 MK/ ME | EXECUTH | Iaufum EAFACE uurl
T | RELDCATION
u 407 soms S2[ARD REGISTER FILE REGISTER FILE

soe]io cPu mPRO/ETO (HoLn)

SECGMENT
0] = BRI 30 ROSGTT (HLDA) DATA REGISTERS
= 29|93 Cock () FOINTER AND AND
. ; INDE® REGS INSTRUCTION
. o3 s] m i) (MA13) |8 WORDS) BOIMTER
v = I zr[@asi (DOT/R} & WOROS,
a5 2613 50 (DEN} e —

3] = I 25 P ase (ALE) :[’_\

MM 7 pas {IHTA) - =
INTRIC] 18 253 TEST L = L

[0y = I 22 P READY | e HHE (S

aMn 20 21 RESET 16 BIT AL L T

- L] 2 :

B %

-pIt registers, exierna s

3 Bus 16 A0 ADC

b) FLAGS INTERFACE ‘J_lf *

uNIT

3 WINTA RDWE

data bus
20-bit addressing (= T

6-BYTE
T INETAUC TN

1MB address space) e
Segmentation : 64KB " -

M,
M CONTROL & TIMING .—2.205"-05'

4 Segmentation registers e — T ees

—

hold 4*64KB =256KB T

CLE RESFT AEADY MNME GNO
Yie

X86 Architecture

80286

“Protected Mode” first introduced
Segment register contents as selector or pointer

24-bit base address - 16MB memory size

80386

32-bit registers for operands and addressing(—=>4GB space)

Lower half of 32 bits is equivalent to 16 bits of earlier
generations [Backward (upward) compatibility with 16-bit
registers]

Some new instructions was added (like bit manipulation)
Max 4GB segmentation of physical space

New Parallel Processing Stages introduced: Bus Interface Unit,
Code Prefetch Unit, Instruction Decode Unit, Execution Unit,
Segment Unit (logical address - Linear address), Paging Unit
(Linear address = physical address)

Memory Organization and Memory Models

Physical Memory
The memory -- the processor addresses on its bus

Organized as a sequence of 8-bit bytes
Each byte is assigned a unique address, a physical address
Real-address Mode (Intel 8086 model):

fixed size segments
Unlimited Direct Software access to all Memory, 1/0O, and peripherals

No hard-ware level memory protection
Segmented memory model (memory grouped into independent
address spaces, segments)

Code, data, stacks are contained in separate segments

Logical address (segment selector and an offset) to address

different sizes

Why segmentation:
Increase reliability of programs and systems — avoid overwriting, Memory
Protection

Flat memory model (a single continuous address space) - linear

address space (. 334
Code, data, stack are all contained in this address space -MeoEL
Byte accessible . $TAcK

- DATA

FLAT
Yo7é

4

Memory Management Model

Linear Address
Flat Model : -
Linear
Address
Space®
’j-
Segmented Model Segments / S
Offset —Lincar |
- [| Address
i Space”
_Ab%grlecsaﬁl Segment Selector o
-
Real-Address Mode Model Linear Address
Offset Space Divided | — — -
:'— Into Equal
i Sized Segments £ . _
A'a%?gsa; Segment Selector >

| I o NI

* The linear address space
can be paged when using the
flat or segmented model. 5

386 Segment registers

Hold 16-bit segment selectors S— L%”t
; ; ™ | segmen
Segment selector: a special pointer that os iy
. e . Segmen
identifies a segment in memory s > are ngped
. . G to the same

Associated with 3 types of storage: inearaitss

Code (instructions are stored): CS + EIP Se%af;”;

(Offset) R Segf‘;ﬁ;l':;

Data DS, ES, FS, and GS | Segment

-

Stack (Procedure Stack is stored): SS
Segment selector €< by Assembler directive

Segmented Memory Model Case:
Loaded with different segments, pointing Linear Address

Space for Program

Use of Segment Registers in Segmented Memory Model

different segments
Program can access 6 different segments _
) Segment Registers Cverlapping

To access a segment not pointed by the Segments

Segment registers? Load a segment selector S sioBres

to a segment register first. S Address 0
Flat (un-segmented) Memory Model |
CaS e: The segment selector in -

each segment register
Overlapped and starts at 0: Code Seg and poinis to an overtapping
Data Seg and Stack Seg address space

Use of Segment Registers for Flat Memory Model

6

Modes of Operation

Operating mode determines which instructions and
architectural features are accessible

Protected mode (from 1286)

Native State of Processor

All instructions and architectural features are available — highest
performance and capability

Recommended mode

Real-address mode
Programming environment of Intel 8086

Processor is in this mode following power-up or reset (for
backward compatibility)

No memory level protection

Overview of Basic Execution

Set of resources for Executing
Instructions and for Storing code,
data, and state information

Resources:
8 General data registers
6 Segment registers
Status and control registers

Holding the following items (for all):

Operands for logical and arithmetic
operations

Operands for address calculations
Memory pointers

GENERAL DATA AND ADDRESS REGISTERS

31 16 15 8 7 0
| A
AX

31 16 15 0
AX EAX
BX |EBX
cx |ecx
DX |EDX
sl ESI
DI ED
BP |EBP
s |ESP
SEGMENT SELECTOR REGISTERS
15 0
cs CODE
ss STACK
DS
=S | DATA
FS
Gs |
INSTRUCTION POINTER
AND FLAGS REGISTER
31 16 15 0
P EIP
FLAGS EFLAGS

Figure 2-1. Intel386™ DX Base
Architecture Registers

General-Purpose Data Registers

Primaries

EAX (accumulator for operands and results
data)

EBX (Pointer to data in Segment)
ECX (Counter)
EDX (for I/O pointer)

Secondaries

EBP (base pointer to data on the stack in DS
segment)

ESI (Source pointer)
EDI (data pointer) for string instructions

ESP (Stack pointer)holds the stack pointer
(restricted use)

ESP points to the top item on the stack and the
EBP points to the "previous" top of the stack
before the function was called.

GENERAL DATA AND ADDRESS REGISTERS

H 16 15

0

AX

BX

CX

L

S

¥

BP

SP

SEGMENT SELECTOR REG

15

1]

INSTRUCTION POINTER
AND FLAGS REGISTER
3 16 15

0

P

FLAGS

EAX
EBX
ECX
EDX
ES

EDI

EBP
ESP

ISTERS

s CODE
85 STACK
Ds |

ES

Fs

G5

DATA

EIP
EFLAGS

Figure 2-1. Intel386™ DX Base
Architecture Registers

EFLAG Register

32-bit register
Initial state: 00000002H

Contains a group of status flags (S), a control flag (C), and a group of system
flags (X)

GENERAL DATA AND ADDRESS REGISTERS

31 16 15 0

AX

BX

CX

DX

Sl

DI

BP

sp

SEGMENT SELECTOR REG
0

15

INSTRUCTION POINTER
AND FLAGS REGISTER
Nn 16 15 0

P

FLAGS

EAX
EBX
ECX
EDX
ESI

EDI

EBP
ESP

ISTERS

cS CODE
SS STACK
DS |

ES

FS

GS

| DATA

EIP
EFLAGS

Figure 2-1. Intel386™ DX Base
Architecture Registers

31302928 2726252423 222120191817 161514 13 1211 10

B 76543 2 10

o=
= =
ma
—-=
oo —

IO Flag (ID) |
Virtual Interrupt Pending (VIP)

Virtual Interrupt Flag (\VIF)
Alignment Check (AC)

Virtual-8086 Mode (VM)

Resume Flag (RF)
Nested Task (NT)

KK KKK

110 Privilege Level (IOPL)

S Qverflow Flag (OF)

C Direction Flag (DF)
Interrupt Enable Flag (IF)

Trap Flag (TF)

Sign Flag (SF)
Zero Flag (ZF)

Auxiliary Carry Flag (AF)

Parity Flag (PF)

W W W ==

Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

> Ow

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Status Flags

31302028272625242322212019181716151413121110 % 8 7 6 5 4 3 2 1 O

3 I=
=
o
o
_'
i

Cwverflow Flag (OF)
Too big (pos)
Too small (neg)?

Sign Flag (SF)
MSh=17?

Zero Flag (ZF)
Result=07?

Auxiliary Carry Flag (AF)
Farity Flag (FF)

For BCD :
operation Even Numbero of 1's ~ Carry Flag (CF)

in LSB Carry or Borrow

Control Flag (DF)

DF (Direction Flag)

The direction flag controls the string instructions
(MOVS, CMPS, SCAS, LODS, and STOS).

DF=1 - string instructions to auto-decrement (that
IS, to process strings from high addresses to low
addresses).

DF=0 -> string instructions to auto-increment
(process strings from low addresses to high
addresses).

STD - Set DF flag
CLD - Clear DF flag

System Flags

3302028 2726252423 222120191817 16151413 121110 &

g 7685 43 2140

01

-
min

ID Flag (ID)
CPUID

Virtual Interrupt Pending (VIP)
Int. Pending?

Virtual Interrupt Flag (VIF)

Alignment Check (AC)
Memory reference aligned?

Virtual-8086 Mode (VM)
1: 8086 mode
0: Protected mode

Fesume Flag (RF)
Response to debug exception

Trap Flag (TF)
Enable/Disable
Single-3Step Debug Mode

——Interrupt Enable Flag (IF)

Int. Respond/Inhibit

/O Privilege Level (IOFPL)
Current Proviledge Level <= 1/O
Privilige level

Nested Task (NT)

Task linked to another task?

Notational Conventions

Bit and Byte Oder
Smaller address at the bottom of figure
Address increases toward top
Bit positions numbered from right to left

Little-Endian Machine

the bytes of a word are numbered starting from the least

significant byte

Data Structure

g';j'g'r‘;*‘i 31 24 23 16 15 8 7 0 <«— Bit offset
28
24
20
16
12
8
P owest
. — — . owes
B'_""L_ 3‘ B'_',".e 2 B‘_-,.fle 1 B"l.lrtt" :I' [: Address

)

Byte Offset

14

Conventions

Instruction Format

Label: mnemonic argumentl, argument2, argument3

Label: Identifier (followed by a colon)

Mnemonic: a reserved name for a class of instruction opcodes which
have the same function

Operands (arguments): The operands argumentl, argument2, and

argument3 are optional.

0 to 3 operands
2 types of form: literals (i.e., numer) or identifiers for data items.

When two operands are present in an arithmetic or logical instruction

the right operand is the source and
the left operand, the destination.

Example:

LOADREG: MOV EAX, SUBTOTAL

' label mnemonic dst Src

Number Representation Convention (1386)

Default : decimal
Binary: a number with 1's and O’s followed by letter B

Hexadecimal: a number with 1 — 9-A-F followed by H
15

How does a simple code look?

File Edit Format Wiew Help

. 586
LJMODEL FLAT
.STACK 4096

LDATH

TC: DWORD 32 :

TF DWORD @ H

LCODE

main FROC
Mo eax, TC
imul eax, 9
add eax, 2
mow ebx, 5
la¥a la
idiw ebx
add eax, 32
Mo TF, eax
mow eax, 0
ret

main ENDP

END

=

File Edit Format View Help

.h86 :

.MODETL. FLAT

LETACK 4090

LDATH

x DWORD 35

y DWORD 47

= DWORD 26

L CODE

main PROC
mow eax, x
add eax, y
Mo ebx, =
add ebx, =bx
sub eax, ebx
inc 2ax
negq eax
mowv eax, 0
ret

main ENDP

END

16

Programming Environment

Next Class:
Visual Studio
Console 32 (and Console64)
Windows 32 (and Windows 64)
Bring your PC/Laptop/etc
TA will guide you In setting up the system
First coding practice

After today’s class
Check the web for Installation Guide
Download Zipped filed
(Encourage to) install Visual Studio

17

Web Page and Instruction

Programming Environment: We need the following 3 steps.

(1) The necessary software is Microsoft Visual Studio of version 2008 or above. If you do not have the software or face problem in the installation, see Mr.
Tolulope Kupoluyi or send email to him at tolulopejupoluyi@gmail.com.

(2) Excitable Set-Up files are needed. Download the following 2 zip files ("save as") (console32 and windows32) and unzip them both to, for example,

desktop

(3) The last file contains all the codes of the book, so you may want to download ("save as") and unzip codeFromText.

After unzip, make sure you have these thing right in

console32.zi
your computer AL =

There must be console32 folder which contains Nagme
Consol232.sIn console32
a sub-folder named ‘console32’ [console32sin
The sub-folder console32 should contain
Console32.vcproj E E console32.ziphconsole32
Separately, there must be windows32 folder with Name

Windows32.slIn

A sub-folder named windows32

which contains a sub-sub-folder (“Debug”) and several files
including window32.vcproj

All the codes of the textbook

conscled2.vcpro

18

