
1

EECE416 :Microcomputer Fundamentals and Design

X86 Assembly Programming

Part 1

Dr. Charles Kim
Department of Electrical and Computer Engineering

Howard University

www.MWFTR.com

2

x86 Architecture
aFirst x86 Family

member: 8086 (Æ
8088). 1978
`Cf. 4004 Æ 8080 Æ 8085

a8086
`16-bit registers, external

data bus
`20-bit addressing (Æ

1MB address space)
`Segmentation : 64KB

⌧4 Segmentation registers
hold 4*64KB =256KB

3

x86 Architecture
a 80286

`“Protected Mode” first introduced
⌧Segment register contents as selector or pointer

⌧24-bit base address Æ 16MB memory size

a 80386
`32-bit registers for operands and addressing(Æ4GB space)
`Lower half of 32 bits is equivalent to 16 bits of earlier

generations [Backward (upward) compatibility with 16-bit
registers]

`Some new instructions was added (like bit manipulation)
`Max 4GB segmentation of physical space
`New Parallel Processing Stages introduced: Bus Interface Unit,

Code Prefetch Unit, Instruction Decode Unit, Execution Unit,
Segment Unit (logical address Æ Linear address), Paging Unit
(Linear address Æ physical address)

4

Memory Organization and Memory Models
a Physical Memory

` The memory -- the processor addresses on its bus
`Organized as a sequence of 8-bit bytes
`Each byte is assigned a unique address, a physical address

a Real-address Mode (Intel 8086 model):
` fixed size segments
` Unlimited Direct Software access to all Memory, I/O, and peripherals
` No hard-ware level memory protection

a Segmented memory model (memory grouped into independent
address spaces, segments)
` Code, data, stacks are contained in separate segments
` Logical address (segment selector and an offset) to address
` different sizes
` Why segmentation:

⌧ Increase reliability of programs and systems – avoid overwriting, Memory
Protection

a Flat memory model (a single continuous address space) Æ linear
address space
` Code, data, stack are all contained in this address space
` Byte accessible

5

Memory Management Model

6

386 Segment registers
a Hold 16-bit segment selectors
a Segment selector: a special pointer that

identifies a segment in memory
a Associated with 3 types of storage:

` Code (instructions are stored): CS + EIP
(offset)

` Data : DS, ES, FS, and GS
` Stack (Procedure Stack is stored): SS

a Segment selector Å by Assembler directive
a Segmented Memory Model Case:

` Loaded with different segments, pointing
different segments

` Program can access 6 different segments
` To access a segment not pointed by the

Segment registers? Load a segment selector
to a segment register first.

a Flat (un-segmented) Memory Model
Case:
` Overlapped and starts at 0: Code Seg and

Data Seg and Stack Seg

Modes of Operation

a Operating mode determines which instructions and
architectural features are accessible

a Protected mode (from i286)
`Native State of Processor
`All instructions and architectural features are available – highest

performance and capability
`Recommended mode

a Real-address mode
`Programming environment of Intel 8086
`Processor is in this mode following power-up or reset (for

backward compatibility)
`No memory level protection

7

8

Overview of Basic Execution

a Set of resources for Executing
instructions and for Storing code,
data, and state information

a Resources:
`8 General data registers
`6 Segment registers
`Status and control registers

a Holding the following items (for all):
`Operands for logical and arithmetic

operations
`Operands for address calculations
`Memory pointers

9

General-Purpose Data Registers
a Primaries

`EAX (accumulator for operands and results
data)

`EBX (Pointer to data in Segment)
`ECX (Counter)
`EDX (for I/O pointer)

a Secondaries
`EBP (base pointer to data on the stack in DS

segment)
`ESI (Source pointer)
`EDI (data pointer) for string instructions
`ESP (Stack pointer)holds the stack pointer

(restricted use)
`ESP points to the top item on the stack and the

EBP points to the "previous" top of the stack
before the function was called.

EFLAG Register
a 32-bit register

` Initial state: 00000002H
` Contains a group of status flags (S), a control flag (C), and a group of system

flags (X)

Status Flags

Control Flag (DF)

aDF (Direction Flag)
`The direction flag controls the string instructions

(MOVS, CMPS, SCAS, LODS, and STOS).
`DF=1 Æ string instructions to auto-decrement (that

is, to process strings from high addresses to low
addresses).

`DF=0 Æ string instructions to auto-increment
(process strings from low addresses to high
addresses).

`STD Æ Set DF flag
`CLDÆ Clear DF flag

System Flags

Notational Conventions
a Bit and Byte Oder

`Smaller address at the bottom of figure
`Address increases toward top
`Bit positions numbered from right to left

a Little-Endian Machine
`the bytes of a word are numbered starting from the least

significant byte

14

15

Conventions
a Instruction Format

` Label: mnemonic argument1, argument2, argument3
` Label: Identifier (followed by a colon)
`Mnemonic: a reserved name for a class of instruction opcodes which

have the same function
`Operands (arguments): The operands argument1, argument2, and

argument3 are optional.
⌧ 0 to 3 operands
⌧ 2 types of form: literals (i.e., numer) or identifiers for data items.

`When two operands are present in an arithmetic or logical instruction
⌧ the right operand is the source and
⌧ the left operand, the destination.

`Example:

LOADREG: MOV EAX, SUBTOTAL
; label mnemonic dst src

a Number Representation Convention (i386)
`Default : decimal
`Binary: a number with 1’s and 0’s followed by letter B
`Hexadecimal: a number with 1 – 9-A-F followed by H

How does a simple code look?

16

Programming Environment
aNext Class:
`Visual Studio
`Console 32 (and Console64)
`Windows 32 (and Windows 64)
`Bring your PC/Laptop/etc
`TA will guide you in setting up the system
`First coding practice

aAfter today’s class
`Check the web for Installation Guide
`Download Zipped filed
`(Encourage to) install Visual Studio

17

Web Page and Instruction

a After unzip, make sure you have these thing right in
your computer
` There must be console32 folder which contains

⌧Consol232.sln
⌧a sub-folder named ‘console32’

• The sub-folder console32 should contain
– Console32.vcproj

`Separately, there must be windows32 folder with
⌧Windows32.sln
⌧A sub-folder named windows32

• which contains a sub-sub-folder (“Debug”) and several files
including window32.vcproj

`All the codes of the textbook

18

