
x86 Assembly Programming

EECE416 uC

Resources:
Intel 80386 Programmers Reference Manual

Essentials of 80x86 Assembly Language
Introduction to 80x86 Assembly Language Programming

ckim
Typewritten Text
WWW.MWFTR.COM EECE416 MICROCOMPUTER DR.CHARLES KIM

Registers for x86

Basic Data Types

• Byte, Words, Double
Words

• Little-Endian
• Align by 2 (word) or 4

(Dwords) for better
performance – instead
of odd address

Other Data Types
• Integer

– Signed numeric: 8, 16, or 32 bits
– 2’s complement representation
– MSb: sign bit

• Ordinal
– Unsigned numeric: 8, 16 or 32 bits

• Near Pointer
– 32-bit logical address
– Offset within a segment

• Far Pointer
– 48-bit address space with segment selector + offset

• String
– 8, 16, or 32 bits

Data Declaration

• Directives for Data Declaration and Reservation of Memory
– BYTE: Reserves 1 byte in memory

• Example: D1 BYTE 20
D2 BYTE 00010100b
String1 BYTE “Joe” ; [4A 6F 65]

– WORD: 2 bytes are reserved
• Example: num1 WORD -1

num2 WORD FFFFH

– DWORD: 4 bytes are reserved
• Example: N1 DWORD -1

– QWORD: 8 bytes
• 64 bit: RAX RBX RCX ,etc
• 32 bit: EDX:EAX Concatenation for CDQ instruction

Register Size and Data
• Assuming that the content of eax is

[01FF01FF], what would be the content of
eax after each instruction?

• label mnemonic dst, src

Exercise of Register Size

• Handout

Instruction Format
• Opcode:

– specifies the operation performed by the
instruction.

• Register specifier
– an instruction may specify one or two

register operands.

• Addressing-mode specifier
– when present, specifies whether an operand

is a register or memory location.
• Displacement

– when the addressing-mode specifier
indicates that a displacement will be used to
compute the address of an operand, the
displacement is encoded in the instruction.

• Immediate operand
– when present, directly provides the value of

an operand of the instruction. Immediate
operands may be 8, 16, or 32 bits wide.

9

386 Instruction Set

• 9 Operation
Categories
– Data Transfer
– Arithmetic
– Shift/Rotate
– String Manipulation
– Bit Manipulation
– Control Transfer
– High Level Language

Support
– Operating System

Support
– Processor Control

• Number of operands:
0, 1, 2, or 3

Data movement Instructions
• MOV (Move)

– transfers a byte, word, or doubleword from the source
operand to the destination operand: R M. M R,
R R, I R, I M

– The MOV instruction cannot move M M or from SR
SR (segment register)

– M M via MOVS (string)
• XCHG (Exchange)

– swaps the contents of two operands.
– swap two byte operands, two word operands, or

twodoubleword operands.
– The operands for the XCHG instruction may be two

register operands, or a register operand with a
memory operand.

Type Conversion Instruction
• CWD (Convert Word to Doubleword)

– extends the sign of the word in register AX throughout register DX
– can be used to produce a doubleword dividend from a word before a word

division
• CDQ (Convert Doubleword to Quad-Word)

– extends the sign of the doubleword in EAX throughout EDX.
– can be used to produce a quad-word dividend from a doubleword before

doubleword division.
• CBW (Convert Byte to Word)

– extends the sign of the byte in register AL throughout AX.
• CWDE (Convert Word to Doubleword Extended)

– extends the sign of the word in register AX throughout EAX.
• MOVSX (Move with Sign Extension)

– sign-extends an 8-bit value to a 16-bit value and a 8- or 16-bit value to 32-bit
value.

• MOVZX (Move with Zero Extension)
– extends an 8-bit value to a 16-bit value and an 8- or 16-bit value to 32-bit value

by inserting high-order zeros.

Addition Instruction
• ADD (Add Integers)

– replaces the destination operand with the sum of the source and destination operands. Sets
CF if overflow.

• ADC (Add Integers with Carry)
– sums the operands, adds one if CF is set, and replaces the destination operand with the

result. If CF is cleared, ADC performs the same operation as the ADD instruction. An ADD
followed by multiple ADC instructions can be used to add numbers longer than 32 bits.

• label mnemonic dst, src

SUB (Subtract Integers)
• SUB:

– subtracts the source operand from the destination operand and replaces the destination
operand with the result. If a borrow is required, the CF is set. The operands may be signed or
unsigned bytes, words, or doublewords.

• SBB (Subtract Integers with Borrow)
– subtracts the source operand from the destination operand, subtracts 1 if CF is set, and

returns the result to the destination operand. If CF is cleared, SBB performs the same
operation as SUB. SUB followed by multiple SBB instructions may be used to subtract
numbers longer than 32 bits. If CF is cleared, SBB performs the same operation as SUB.

• label mnemonic dst, src

ADD & SUB Examples

INC & DEC
• INC (Increment)

– adds one to the destination operand. INC does not affect CF.
Use ADD with an immediate value of 1 if an increment that
updates carry (CF) is needed.

• DEC (Decrement)
– subtracts 1 from the destination operand. DEC does not update CF. Use

SUB with an immediate value of 1 to perform a decrement that affects
carry.

INC + DEC examples

CMP + NEG
• CMP (Compare)

– subtracts the source operand from the destination operand. It updates
OF, SF, ZF, AF, PF, and CF but does not alter the source and
destination operands.

• NEG (Negate)
– subtracts a signed integer operand from zero. The effect of NEG is

to reverse the sign of the operand from positive to negative or from
negative to positive.

NEG Examples

Manual execution practice –Done !

Multiplication Instruction - MUL
• MUL (Unsigned Integer Multiply)

– performs an unsigned multiplication of the source
operand and the accumulator [(E)AX].

– If the source is a byte, the processor multiplies it by
the contents of AL and returns the double-length
result to AH and AL.

– If the source operand is a word, the processor
multiplies it by the contents of AX and returns the
double-length result to DX and AX.

– If the source operand is a double-word, the
processor multiplies it by the contents of EAX and
returns the 64-bit result in EDX and EAX. MUL sets
CF and OF when the upper half of the result is
nonzero; otherwise, they are cleared.

– Operand cannot be immediate

MUL Opr/Store Summary

MUL - Exercise

IMUL (Signed Integer Multiply)
• performs a signed multiplication operation. IMUL has three

variations:
– 1. An one-operand form. The operand may be a byte, word, or

doubleword located in memory or in a general register. This
instruction uses EAX and EDX as implicit operands in the same
way as the MUL instruction.

– 2. A two-operand form. One of the source operands may be
in any general register while the other may be either in
memory or in a general register. The product replaces the
general-register operand.

– The immediate operand is treated as signed. If the immediate
operand is a byte, the processor automatically sign-extends
to the size of destination before performing the
multiplication.

IMUL

MUL & IMUL Exercise

Division Instruction
• DIV (Unsigned Integer Divide)

– performs an unsigned division of the accumulator by the source
operand.

– The dividend (the accumulator) is twice the size of the divisor
(the source operand)

– the quotient and remainder have the same size as the divisor.

• IDIV (Signed Integer Divide)
– performs a signed division of the accumulator by the source

operand.
– uses the same registers as the DIV instruction

DIV opr/store summary

DIV & IDIV

DIV vs IDIV

DIV & IDIV Exercise

Manual Execution 2

Boolean Operation Instruction
• AND, OR, XOR, and NOT
• NOT (Not)

– inverts the bits in the specified operand to form a one's complement of
the operand.

– a unary operation that uses a single operand in a register or memory.
– has no effect on the flags.

• AND: logical operation of "and“
• OR: Logical operation of “(inclusive)or”
• XOR: Logical operation of "exclusive or".
• AND, OR, XOR clear OF and CF, leave AF undefined, and update

SF, ZF, and PF.

Bit Test, Modify, Scan Instructions
• Bit Test

– Operates on a single bit in a register or memory
– assign the value of the selected bit to CF, the carry flag. Then a new value is

assigned to the selected bit, as determined by the operation.

• Bit Scan
– scan a word or doubleword for a one-bit and store the index of the first set bit into a register.
– The ZF flag is set if the entire word is zero (no set bits are found)
– ZF is cleared if a one-bit is found.
– If no set bit is found, the value of the destination register is undefined.
– BSF (Bit Scan Forward)

• scans from low-order to high-order (starting from bit index zero).
– BSR (Bit Scan Reverse)

• scans from high-order to low-order (starting from bit index 15 of a word or index 31 of a doubleword).

Shift Instructions
• The bits in bytes, words, and doublewords may be

shifted arithmetically or logically, up to 31 places.
• Specification of the count of shift

– Implicitly as a single shift
– Immediate value
– Value contained in the CL (lower order 5 bits)

• CF always contains the value of the last bit shifted out of the
destination operand.

• In a single-bit shift, OF is set if the value of the high-order (sign) bit
was changed by the operation. Otherwise, OF is cleared.

• The shift instructions provide a convenient way to accomplish
division or multiplication by binary power.

SAL, SAR, SHL, SHR
• SAL (Shift Arithmetic Left) shifts the destination byte, word, or

doubleword operand left by one or by the number of bits specified in
the count operand.
– CF receives the last bit shifted out of the left of the operand.

• SAR (Shift Arithmetic Right) shifts the destination byte, word, or
doubleword operand to the right by one or by the number of bits
specified in the count operand.
– SAR preserves the sign of the register/mem operand as it shifts the

operand to the right.
– CF receives the last bit shifted out of the right of the operand.

• SHL (Shift Logical Left) is a synonym for SAL
– CF Receives the last bit shifted out of the left of the operand.
– SHL shifts in zeros to fill the vacated bit locations

• SHR (Shift Logical Right) shifts the destination byte, word, or
doubleword operand right by one or by the number of bits specified
in the count operand.
– CF received the last bit shifted out of the right of the operand.
– Shifts in zeros to fill the vacated bit locations.

SHL SAL SHR SAR

Example

Example

Shift Practice 1
• (1) Before: [AX]=A8B5

– Instruction: SHL AX,1
– After: [AX]=

• (2) Before: [AX]=A8B5
– Instruction: SHR AX,1
– After: [AX]=

• (3) Before: [AX]=A8B5
– Instruction: SAR AX,1
– After: [AX]=

SHIFT Practice 2
• (1) Before: [AX]=A8B5; [CL]=04

– Instruction: SAL AX,CL
– After: [AX]=

• (2) Before: [AX]=A8B5; [CL]=04
– Instruction: SAR AX,CL
– After: [AX]=

• (3) Before: [AX]=A8B5
– Instruction: SHR AX,4
– After: [AX]=

Rotation

MOVE

Arithmetic

Logic +

Jump

