WWW.MWFTR.CONEECE416 MICROCOMPUTER DR.CHARLESKIM

EECE416 :Microcomputer Fundamentals and

Design (“Microcomputer & Microprocessor”)

X86 Assembly Programming

Dr. Charles Kim

Department of Electrical and Computer Engineering

Howard University

ckim
Typewritten Text
WWW.MWFTR.COM EECE416 MICROCOMPUTER DR.CHARLES KIM

X86 Architecture

First x86 Family member: oy S (1]

GND I of3v,
E aora]2 safams
[Az s TP AT
D s 36 A18,55
apios 35 A19/568
Cf. 4004 > 8080 > 8085 A |
’ sos]a I EXECUTION utaT | BUS INTEREACE on
T I RELDCATION
ADTEIS gogg 3ZPIRD . REGISTER FILE REGISTER FiLE
seddio cpu mfpRessTE (How) o
ey = SR 30 RO/GT1 (HLDA) oata AEGISTERS
apaiz mpock (WR) BOINTER AND AND
; . NOEH INSTRUC TION
apa]1s zafpsz (M) & WORDS! BOINTER
= = ADz14 2751 (DT/R} & WOROS,
- (BERY - ——
16-bit registers, external data = »q: b2 e = :
ano]is zsPeso (ALE)
MM 7 pas {IHTA) - =
us (%] = A1) 23 TEST L. < L
cwie 22 [READY | | BRE.
ano 20 21 [IRESET 16 BIT ALY e
. .] '
20-bit addressing (= 1MB Y e
16 18 AD
o5 ERFace [\
address space) e

Segmentation (by 16-bit) : | A

64KB —
4 Segmentation registers hold

4*64KB =256KB i -
Upto 256KB can be addressed i/ A i G

without switching between T T T
Segments cle meser nchoy e i

X86 Architecture

80286

Protected Mode
Segment register contents as selector or pointer - discriptor table

24-bit base address - 16MB memory size
Application protection

386

32-bit registers for operands and addressing(—=>4GB space)

Lower half of 32 bits is equivalent to 16 bits of earlier
generations [Backward (upward) compatibility with 16-bit
registers]

Some new instructions was added (like bit manipulation)
Max 4GB segmentation of physical space

New Parallel Processing Stages introduced: Bus Interface Unit,
Code Prefetch Unit, Instruction Decode Unit, Execution Unit,
Segment Unit (logical address = Linear address), Paging Unit
(Linear address - physical address) 3

Memory Organization and Memory Models

Physical Memory
The memory -- the processor addresses on its bus
Organized as a sequence of 8-bit bytes

Each byte is assigned a unique address, a physical
address

Range: 36 address lines - 64 GB
Flat memory model (a single continuous address space) =2
linear address space 334
Code, data, stack are all contained in this address space |.Moppr. FLAT
Byte accessible
Segmented memory model (memory grouped into P STACK yoté
Independent address spaces, segments) .DATA
Code, data, stacks are contained in separate segments
Logical address (segment selector and an offset) to address
Up to 16K segments of different sizes (max 64 GB)

Why segmentation:
Increase reliability of programs and systems — avoid overwriting

Real-Address Mode (Intel 8086 model)

Memory Management Model

Linear Address
Flat Model : -
Linear
Address
Space®
’j-
Segmented Model Segments / S
Offset —Lincar |
- [| Address
i Space”
_Ab%grlecsaﬁl Segment Selector o
-
Real-Address Mode Model Linear Address
Offset Space Divided | — — -
:'— Into Equal
i Sized Segments £ . _
A'a%?gsa; Segment Selector >

| I o NI

* The linear address space
can be paged when using the
flat or segmented model. 5

Modes of Operation

Operating mode determines which instructions and
architectural features are accessible - 3 Operating modes

Protected mode
Native State of Processor

All instructions and architectural features are available — highest
performance and capability

Recommended mode
Real-address mode

Programming environment of Intel 8086
Processor is in this mode following power-up or reset

System management mode (SMM)

Power management and system security

Enters SMM by SMM interrupt (SMI) or APIC (Advanced Programmable
Interrupt Controller)

Overview of Basic Execution

Set of resources for Executing
Instructions and for Storing code,
data, and state information

Resources GENERAL DATA AND ACDRESS REGISTERS
Address space: 36 address lines T
8 General data registers ox_]ecx
6 Segment registers s |es
Status and control registers S

Holding the following items (for all): SEGMENTSE‘L?CQZRE%.?;RS
Operands for logical and arithmetic cs CODE
operations s ST
Operands for address calculations ES DATA
Memory pointers o

gAi()(accumulator for operands and results ANDFLAGS REGISTER

a a P EIP
EBX (Pointer to data in Segment) FLAGS JERLAGS
ECX (Counter) T chitecture Registers.

EDX (for 1/0 pointer)

General-Purpose Data Registers

EBP (base pointer to data on
the stack in DS segment)

ESI (Source pointer)

EDI (data pointer) for string
Instructions

ESP (Stack pointer)holds the
stack pointer (restricted use)

ESP points to the top item
on the stack and the EBP
points to the "previous" top
of the stack before the
function was called.

GENERAL DATA AND ADDRESS REGISTERS

N

16 15

0

AX

EX

X

Ly

Sl

Dl

BP

SP

SEGMENT SELECTOR REG

INSTRUCTION POINTER

is

0

AND FLAGS REGISTER

3

16 15

0

P

FLAGS

EAX
EBX
ECX
EDX
ESI

ED|

EBP
ESP

ISTERS

s CODE
S5 STACK
Ds |

ES

FS

G5

DATA

EIP
EFLAGS

Figure 2-1, Intel386™ DX Base
Architecture Registers

Segment registers - Revisit

Hold 16-bit segment selectors

Segment selector: a special pointer that
Identifies a segment in memory
Associated with 3 types of storage:

Code (instructions are stored): CS + EIP
(offset)

Data : DS, ES, FS, and GS
Stack (Procedure Stack is stored): SS

Segment selector € by Assembler directiv
Flat (un-segmented) Memory Model
Case:

Overlapped and starts at 0: Code Seg and
Data Seg and Stack Seg

Segmented Memory Model Case:

Loaded with different segments, pointing
different segments

Program can access 6 different segments
To access a segment not pointed by the

Segment registers? Load a segment selector

to a segment regqister first.

Segment Registers

C5—
05—
55—
ES
FS —
GE—
The segment selector in

Linear Address
Space for Program

Y

Cwerlapping
Segments
of up to
4G Byles
Beginning at
Address 0

each segment register
paoints to an overlapping
sagment in the linear
address space.

Use of Segment Registers for Flat Memory Model

Cs |—'

DS

ES
Fs

Code
Segment
Segment Registers

Data
Segment

Stack
Segment

GS

-

Data
Segment

Data
Segment

—_—

Data
Segment

-

All segments
are mapped
to the same
linear-addrass
space

Use of Segment Registers in Segmented Memory Model

9

EFLAG Register

32-bit register
Initial state: 00000002H

Contains a group of status flags, a control flag, and a group of system
flags

GENERAL DATA AND ADDRESS REGISTERS

31 16 15 0

AX

BX

CX

DX

Sl

DI

BP

sp

SEGMENT SELECTOR REG
0

15

INSTRUCTION POINTER
AND FLAGS REGISTER
Nn 16 15 0

P

FLAGS

EAX
EBX
ECX
EDX
ESI

EDI

EBP
ESP

ISTERS

cS CODE
SS STACK
DS |

ES

FS

GS

| DATA

EIP
EFLAGS

Figure 2-1. Intel386™ DX Base
Architecture Registers

31302928 2726252423 222120191817 161514 13 1211 10

B 76543 2 10

o=
= =
ma
—-=
oo —

IO Flag (ID) |
Virtual Interrupt Pending (VIP)

Virtual Interrupt Flag (\VIF)
Alignment Check (AC)

Virtual-8086 Mode (VM)

Resume Flag (RF)
Nested Task (NT)

KK KKK

110 Privilege Level (IOPL)

S Qverflow Flag (OF)

C Direction Flag (DF)
Interrupt Enable Flag (IF)

Trap Flag (TF)

Sign Flag (SF)
Zero Flag (ZF)

Auxiliary Carry Flag (AF)

Parity Flag (PF)

W W W ==

Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

> Ow

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Status Flags

31302028272625242322212019181716151413121110 % 8 7 6 5 4 3 2 1 O

3 I=
=
o
o
_'
i

Cwverflow Flag (OF)
Too big (pos)
Too small (neg)?

Sign Flag (SF)
MSh=17?

Zero Flag (ZF)
Result=07?

Auxiliary Carry Flag (AF)
Farity Flag (FF)

For BCD :
operation Even Numbero of 1's ~ Carry Flag (CF)

in LSB Carry or Borrow

Control Flag (DF)

DF (Direction Flag)

The direction flag controls the string instructions
(MOVS, CMPS, SCAS, LODS, and STOS).

DF=1 -> string instructions to auto-decrement (that
IS, to process strings from high addresses to low
addresses).

DF=0 -> string instructions to auto-increment
(process strings from low addresses to high
addresses).

STD - Set DF flag
CLD - Clear DF flag

System Flags

3302028 2726252423 222120191817 16151413 121110 &

g 7685 43 2140

01

-
min

ID Flag (ID)
CPUID

Virtual Interrupt Pending (VIP)
Int. Pending?

Virtual Interrupt Flag (VIF)

Alignment Check (AC)
Memory reference aligned?

Virtual-8086 Mode (VM)
1: 8086 mode
0: Protected mode

Fesume Flag (RF)
Response to debug exception

Trap Flag (TF)
Enable/Disable
Single-3Step Debug Mode

——Interrupt Enable Flag (IF)

Int. Respond/Inhibit

/O Privilege Level (IOFPL)
Current Proviledge Level <= 1/O
Privilige level

Nested Task (NT)

Task linked to another task?

Notational Conventions

Bit and Byte Oder
Smaller address at the bottom of figure
Address increases toward top
Bit positions numbered from right to left

Little-Endian Machine

the bytes of a word are numbered starting from the least

significant byte

Data Structure

g';j'g'r‘;*‘i 31 24 23 16 15 8 7 0 <«— Bit offset
28
24
20
16
12
8
P owest
. — — . owes
B'_""L_ 3‘ B'_',".e 2 B‘_-,.fle 1 B"l.lrtt" :I' [: Address

)

Byte Offset

14

Conventions

Instruction Format

Label.: mnemonic argumentl, argument2, argument3
Label: Identifier (followed by a colon)

Mnemonic: a reserved name for a class of instruction opcodes
which have the same function

Operands (arguments): The operands argumentl, argument2,
and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the
form of either literals or identifiers for data items. Operand
Identifiers are either reserved names of registers or are assumed
to be assigned to data items declared in another part of the
program.

When two operands are present in an arithmetic or logical
Instruction, the right operand is the source and the left operand is
the destination.

Example: LOADREG: MOV EAX, SUBTOTAL
label mnemonic dst Src

15

Conventions

Binary and Hexadecimal Numbers

Base 2 (binary) numbers are represented by
a string of 1s and Os, sometimes followed by
the character B (for example, 1010B).

The “B” designation is only used in situations
where confusion as to the type of number
might arise.

Base 16 (hexadecimal) numbers are
represented by a string of hexadecimal digits
followed by the character H (for example,
F82EH).

A hexadecimal digit is a character from the
following set: 0, 1, 2, 3,4,5,6, 7, 8,9, A, B,
C,D, E,and F.

16

Modes of Operation

Operating mode determines which instructions and
architectural features are accessible - 3 Operating modes
Protected mode

Native State of Processor

All instructions and architectural features are available — highest

performance and capability 384

Recommended mode ‘Moo FLAT
Real-address mode L STACK Yoté

Programming environment of Intel 8086 .DATA

Processor is in this mode following power-up or reset

System management mode (SMM)

Power management and system security

Enters SMM by SMM interrupt (SMI) or APIC (Advanced Programmable
Interrupt Controller)

17

9 Operation Categories

Data Transfer
Arithmetic
Shift/Rotate

String Manipulation
Bit Manipulation
Control Transfer

High Level Language
Support

Operating System
Support
Processor Control

Number of operands:
0,1,2,0or3

386 Instruction Set

I CAEFI e s UL RN L% IR il s R

ADDITION
ADD Add operands
ADC Add with camy
INC Increment oparand by 1
AR ASCII adjust for addition
DA Decimal adust for addition
SUBTRACTION

SUB Subtract oparands
SBB Subtract with borrow
DEC Decrement oparand by 1
MNEG MNegate operand
CMP Compare oparands
DAS Decimal adust for subtraction
AAS ASCI Adjust for subtraction

MULTIPLICATION
UL Multiply Double/Single Precision
IMUL Integer multiply
AAM ASCI adjust after multiply

DIVISION

DIV Dinvide unsigned
DIV Integer Divide
AAD Cll adjust before division

18

