
1

EECE416 :Microcomputer Fundamentals and
Design (“Microcomputer & Microprocessor”)

X86 Assembly Programming

Dr. Charles Kim
Department of Electrical and Computer Engineering

Howard University

ckim
Typewritten Text
WWW.MWFTR.COM EECE416 MICROCOMPUTER DR.CHARLES KIM

2

x86 Architecture
a First x86 Family member:

8086 (Æ 8088). 1978
`Cf. 4004 Æ 8080 Æ 8085

a 8086
`16-bit registers, external data

bus
`20-bit addressing (Æ 1MB

address space)
`Segmentation (by 16-bit) :

64KB
⌧4 Segmentation registers hold

4*64KB =256KB
⌧Upto 256KB can be addressed

without switching between
Segments

3

x86 Architecture
a 80286

`Protected Mode
⌧Segment register contents as selector or pointer Æ discriptor table

`24-bit base address Æ 16MB memory size
`Application protection

a 386
`32-bit registers for operands and addressing(Æ4GB space)
`Lower half of 32 bits is equivalent to 16 bits of earlier

generations [Backward (upward) compatibility with 16-bit
registers]

`Some new instructions was added (like bit manipulation)
`Max 4GB segmentation of physical space
`New Parallel Processing Stages introduced: Bus Interface Unit,

Code Prefetch Unit, Instruction Decode Unit, Execution Unit,
Segment Unit (logical address Æ Linear address), Paging Unit
(Linear address Æ physical address)

4

Memory Organization and Memory Models
a Physical Memory

`The memory -- the processor addresses on its bus
`Organized as a sequence of 8-bit bytes
`Each byte is assigned a unique address, a physical

address
`Range: 36 address lines Æ 64 GB

a Flat memory model (a single continuous address space) Æ
linear address space
`Code, data, stack are all contained in this address space
`Byte accessible

a Segmented memory model (memory grouped into
independent address spaces, segments)
`Code, data, stacks are contained in separate segments
` Logical address (segment selector and an offset) to address
`Up to 16K segments of different sizes (max 64 GB)
`Why segmentation:

⌧Increase reliability of programs and systems – avoid overwriting
a Real-Address Mode (Intel 8086 model)

5

Memory Management Model

Modes of Operation

a Operating mode determines which instructions and
architectural features are accessible - 3 Operating modes

a Protected mode
`Native State of Processor
`All instructions and architectural features are available – highest

performance and capability
`Recommended mode

a Real-address mode
`Programming environment of Intel 8086
`Processor is in this mode following power-up or reset

a System management mode (SMM)
`Power management and system security
` Enters SMM by SMM interrupt (SMI) or APIC (Advanced Programmable

Interrupt Controller)

6

7

Overview of Basic Execution

a Set of resources for Executing
instructions and for Storing code,
data, and state information

a Resources:
`Address space: 36 address lines
`8 General data registers
`6 Segment registers
`Status and control registers

a Holding the following items (for all):
`Operands for logical and arithmetic

operations
`Operands for address calculations
`Memory pointers

a EAX (accumulator for operands and results
data)

a EBX (Pointer to data in Segment)
a ECX (Counter)
a EDX (for I/O pointer)

8

General-Purpose Data Registers

aEBP (base pointer to data on
the stack in DS segment)

aESI (Source pointer)
aEDI (data pointer) for string

instructions
aESP (Stack pointer)holds the

stack pointer (restricted use)
aESP points to the top item

on the stack and the EBP
points to the "previous" top
of the stack before the
function was called.

9

Segment registers - Revisit
a Hold 16-bit segment selectors
a Segment selector: a special pointer that

identifies a segment in memory
a Associated with 3 types of storage:

` Code (instructions are stored): CS + EIP
(offset)

` Data : DS, ES, FS, and GS
` Stack (Procedure Stack is stored): SS

a Segment selector Å by Assembler directive
a Flat (un-segmented) Memory Model

Case:
` Overlapped and starts at 0: Code Seg and

Data Seg and Stack Seg
a Segmented Memory Model Case:

` Loaded with different segments, pointing
different segments

` Program can access 6 different segments
` To access a segment not pointed by the

Segment registers? Load a segment selector
to a segment register first.

EFLAG Register
a 32-bit register

` Initial state: 00000002H
` Contains a group of status flags, a control flag, and a group of system

flags

Status Flags

Control Flag (DF)

aDF (Direction Flag)
`The direction flag controls the string instructions

(MOVS, CMPS, SCAS, LODS, and STOS).
`DF=1 Æ string instructions to auto-decrement (that

is, to process strings from high addresses to low
addresses).

`DF=0 Æ string instructions to auto-increment
(process strings from low addresses to high
addresses).

`STD Æ Set DF flag
`CLD Æ Clear DF flag

System Flags

Notational Conventions
a Bit and Byte Oder

`Smaller address at the bottom of figure
`Address increases toward top
`Bit positions numbered from right to left

a Little-Endian Machine
`the bytes of a word are numbered starting from the least

significant byte

14

15

Conventions
aInstruction Format

`Label: mnemonic argument1, argument2, argument3
`Label: Identifier (followed by a colon)
`Mnemonic: a reserved name for a class of instruction opcodes

which have the same function
`Operands (arguments): The operands argument1, argument2,

and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the
form of either literals or identifiers for data items. Operand
identifiers are either reserved names of registers or are assumed
to be assigned to data items declared in another part of the
program.

`When two operands are present in an arithmetic or logical
instruction, the right operand is the source and the left operand is
the destination.

`Example: LOADREG: MOV EAX, SUBTOTAL
` label mnemonic dst src

Conventions
aBinary and Hexadecimal Numbers
`Base 2 (binary) numbers are represented by

a string of 1s and 0s, sometimes followed by
the character B (for example, 1010B).
`The “B” designation is only used in situations

where confusion as to the type of number
might arise.
`Base 16 (hexadecimal) numbers are

represented by a string of hexadecimal digits
followed by the character H (for example,
F82EH).
`A hexadecimal digit is a character from the

following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, and F.

16

Modes of Operation

a Operating mode determines which instructions and
architectural features are accessible - 3 Operating modes

a Protected mode
`Native State of Processor
`All instructions and architectural features are available – highest

performance and capability
`Recommended mode

a Real-address mode
`Programming environment of Intel 8086
`Processor is in this mode following power-up or reset

a System management mode (SMM)
`Power management and system security
` Enters SMM by SMM interrupt (SMI) or APIC (Advanced Programmable

Interrupt Controller)

17

18

386 Instruction Set

a 9 Operation Categories
`Data Transfer
`Arithmetic
`Shift/Rotate
`String Manipulation
`Bit Manipulation
`Control Transfer
`High Level Language

Support
`Operating System

Support
`Processor Control

a Number of operands:
0, 1, 2, or 3

