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Grounding Conditions

e Affects the fault current
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Three-Phase Simplified Representation of an Ungrounded Network
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Ungrounded Network — Sequence Analysis

‘ Foreward Fault
V, l
|

xC = xc, (Sf closed)

05 ~ s

Vo =-lo " (-JXCog)=] XCps Ig

Therefore, for forwarding fault: Z, =V, /lp = +XCqg

Reverse Fault

Reverse Fault (Fault at
the remaining ssytem)

XCo_

“Vo =lo (ZoL -JXCoL )= "lg Zo 4+ iXCo *lg
Vo = -1XGy "lo <—— considering XC ol >> Z oL

Therefore, for reverse fault: Z, =V, /15 =-XCq




Zero-Seq Impedance Plane Directional Element
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Fault Detection/Direction Method for Compensated Networks

e Voltage Detection
— Zero-Sequence Voltage (V,)
— Phase-to-Ground Voltage
— Incremental Zero-Sequence Voltage (AV,)

e Wattmetric Method (Real Current)
e Zero Sequence Directional Relay Approach
e Conductance Method




Zero Sequence Directional in I° and V° Plane

» Zero-Sequence Directional Relay —
classical solution
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Compensated System Network — Analysis
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Compensated System

Patented Idea
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What is claimed is:
1. Asystem for detecting ground fanlis in a compensated
distribution network, comprising:

means for determining the zero sequence voltage (V,,) and
zero sequence current (1) on a power ling;

a calculation system for calculating therefrom a_condu
tance or resistance value from the real parts of said zero
sequence vollage and zero sequence current;

y lor enabling the operation of the caleulating
system for only preselected power line conditions; and
means for comparing the conductance or resistance value
L a first threshold value W delermine a forward
and a second threshold value 1o determine a
reverse Laull,

ABSTRACT

dem for detecting ground faulls in a compensated
© power distribution network includes the determina-
[ zero sequence voltage (V,)) and zero sequence current
n a power line and caleulating the zero sequence
clance (Gp) therefrom. The operation of the conduc-
caleulation circuit oceurs only under selected power
snditions involving minimum values of zero sequence
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Single-Line and Sequence Diagrams
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Compensated Network (Reverse Fault)
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Sequence Current Phase-Change Method

* Phase voltage and current

Vp polarizing voltage .

Ipre prefault current

Iy, I, fault currents
Y

Fault current regions for directional comparison.

Zero-Sequence Phase Change

e Fault Direction
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Fault Direction Indicator
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Wattmetric Relay Element

W= BlVs -1 J< VoI, cosp
Wb f)o{?.’-ﬁre )LJ\MS'W ¢

nygative

» Has been used for many years for compensated
networks.

» Simple, secure, dependable (for low resistance faults)

» The requirement of sensitive detection of V_ is a limit for
high resistance faults.

« Dependent on CT accuracy

Real Current Component Method

» Determination of voltage sag source by
the phase angle difference between
current and voltage.

 Two Source System at Pre-fault condition
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At Fault Condition
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Phase Current Phasor Change Approach -Principle

» A directional relay algorithm for radial systems

using current signals only — phasor change in
current between normal and fault

» The direction of a fault can be determined by
finding the difference in angle of positive-

sequence current phasors from fault and pre-
fault data.

» Voltage information (at the relay point) is
required.

Phase Current Phase Change Approach-Example

I Single-phase radial distribution system.
pre
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Different current waveforms at the secondary of CT.




Example Case

TABLEI
(CURRENT PHASOR DATA FOR SINGLE-PHASE SYSTEM, FAULT AT 0.1 s

Full Fault Prefault Dilference
postion Mag | Angle | Mag | Angle | Mag | Angle
(A) | (rad)y | (A) | (rad) [ (A) | (rad)
FL [ 116 ] 025 14 | <134 | 102 | 1.5
2119 ] 2l 14 | 13 | 105 | -1.37
TABLEII

CURRENT PHASOR DATA FOR THE SINGLE-PHASE SYSTEM, FAULT AT 011 s

Fault Prefault Difference
Mag | Angle | Mag | Angle | Mag | Angle
(A (rad) (A) [ (rad) (A) | (rad)
FIL [ 116 -289 | 14 | 180 | 102 | 159
2119 ] 043 14 180 | 105 | -1.37

Fault
position

How about this patented method?

T D S0 N

US005796259A

United States Patent 19 (i1 Patent Number: 5,796,259
Dickmander 451 Date of Patent: Aug. 18, 1998

[54] METHODS AND APPARATUS FOR Primary Examiner—(lenn W. Brown
DETECTION OF FAULT DIRECTION Attormey, Agent, or Firm—Woodcock Washburn Kurtz

3 ) Mackiewicz & Nomis LLP
[75]1 Inventor: David L. Dickmander. Cary, N.C. 571 ABSTRACT

[73] Assignee: ABB Power T&D Company, Inc.. Apparatus and methods for detecting the direction of a fault
Raleigh. N.C. inrelation to a switch connected between a source and a load
- N " " - r for generating
@1 Appl Generally. the invention determines fault direction based |ndpower cycles.

on observations of the voltage and current conditions at the b ‘:‘;’aﬁ
fault inception instamt. More particularly, the invention :cmen})‘:rmples

151 Int. C| determines that fault direction is downstream if at the fault | the sign of the

1521 US-{ jnstant the polarity of the current deviation between the |mPerator com

. - . cycle to the sign
{58 Fiaa | Present cycle and the prior cycle is in the same direction as |: first comparator

the measured voltage. For example. if the voltage has a |on in relation to

- - . fault i
positive polarity. a downstream fault will cause the present |ir iqiomet:

1561 cycle current to deviate from the prior cycle current in the | first and second
positive direction, If the voltage has a negative polarity, a | °mpertorwhich
downstream fault will cause the present cycle current to
deviate from the prior cycle current in the negative direction. 30

[22] Filed:




Electric/Magnetic Field of Transient Wave from Earth Fault

» Discharging/Recharging
transients during the
initiation of the fault are
used to detect the
direction to the fault in
compensated and

7 Activated
@:Indi::m

@. Sleeping
7/ Indicators

isolated networks. “‘*@\
» Peterson coil acts as high gy

impedance to the -

transients, making the P

transients intact, not !
affected. il

* E (~voltage)
* B (~Current)

m
=
P
ol

Transient Measurement

 Earth fault traveling wave has long S SRy
been recognized for fault detection. AR AN RS
» Utilized by so-called “Wischer relay” [ R |
(Transient Measurement) when all '. i
other detection methods have failed :
in compensated networks. R SV

* Indicator: transients due to phase-to- SRR
ground fault. Redistribution of the ; |
phase-to-ground voltage is forced L '
throughout the Whole System : Typical voltage and current waveforms during sn earth fault

» Make use of slower subsequent
transient oscillations.

» Two types of transients

— Discharge Transient (of the faulty

nal function 1s already available
he behaviour of this static non
zed as follows @

conductor) s deteeied it SOHz sero-

— Recharging Transient (of the healthy :
conductor) ; e
Using the =d by th the flow
. first alternance of the induced




Discharging Transient

» Discharging transient
— On faulty conductor
— Charge is drained off
— Ground is conducted to its entire length

— Initial part of this charge is the traveling wave that
passes along the faulty conductor and discharges it to
ground.

— The termination of the line ends determines the
degree of reflection and damping

— This transient is effectively damped out by skin-effect

in cables and lines and by the load of the connected
distribution transformer along the line.

Recharging Transient

* Recharging transient
— Recharging of the healthy conductors
— The transport of the charge from the ground to the healthy
conductors is established through the inductance/windings of
connected equipment (transformers).
— This becomes much lower frequency than the discharging
transient

— This charge will initiate a damped oscillation into the steady state
fault situation. |

3
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recharging transient
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A new measurement method for a FlI

(7)) (v, (x.y)

» Electromagnetic field below the :
line (in order to distinguish faults N a
from other switching operations.) \ |

— Horizontal component of magnetic N

field (substitute for zero sequence
current)

— Vertical component of electric field
(substitute for zero sequence
voltage)

» Contribution from each conductor
is summed up to calculate the

total electric field and magnetic VAR
field in the position of the fault b
i n d | cator. Electrotetc contribution from e uctors At their mirror-charges

Fault Indication/Direction

» Comparison of the polarity between
the measured voltage-(vertical

component of electrical field: Ey) E, — .(G0)

and current transient (horizontal T sesowars

component of flux density: Bx). e
 If the two transients are in phase, A

the fault is considered to be a 5 Ny F Q0]

forward fault (downstream if the ot

indicator is facing the feeder), and
if the two transients are in opposite
phase, the fault is considered a
backward fault (upstream).




Field Test
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Surge Based Direction Discrimination

United States Patent 5 (1] Patent Number: 4,922,368
Johns [45] Date of Patent: May 1, 1990
[54] METHOD AND APPARATUS FOR tions on Power Delivery, vol. PWRD-1, No. 3, Jul.
DETECTING AND DISCRIMINATING 1986.
FAULTS IN TRANSMISSION CIRCUITS Aucoin et al., “Distribution Impedance Fault Detection
X 1L . Utilizing High Frequency Current Components”,
(73] Inventor: T. Johns, Swindon, England IEEE Transactions of Power Apparatus and Systems,
(73] Assignee: National Research Development vol. PAS-101, No. 6, Jun. 1982,
Corporation, London, England Primary Examiner—Derek 8. Jennings
[21] Appl. No.: 275,723 Attorney, Agent, or Firm—Cushman, Darby & Cushman
[22] Filed: Nov. 23, 1988 [571 ABSTRACT
[30] Foreign Application Priority Data Discriminating circuits are coupled to receive signals
P fram a nratected tranemission circuit. Each discriminat-
2 < 5 from a direction detector sig-
f — any fault which occurs is for-
predetermined point. The dis-
/ T ranged to produce an output

reaker of the protected circuit
lin the protected circuit. In this

i i
I >~ FORWARD F—>REVERSE
— -—
ReveRse | FORMARD :

Surge (Traveling Wave) Based Scheme

» Use of high frequency components to determine the
faulty section of an overhead power distribution feeder.

» Try to determine the faulty section of a distribution
system by detecting fault-induced high frequency
components on the line.

* Principle

— Tuned Circuits to receive high frequency components on the line
due to faults (Stack Tuners)
« High-Z for power frequency

« Effective Impedance that matches the line characteristic impedance
at the center frequency

— Line trap that is tuned at the center frequency so that it becomes
a virtual short circuit at the frequency
* Impedance Zt at the center frequency




Locator Arrangement
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Details of the Stack Tuners

e Stack Tuners

— At center frequency = 90kHz, the stack tuner has about
500 ohm, which is close to the typical 11kV characteristic
impedance

— The shunt path formed by each stack tuner correctly
terminates the line

— Ensures that standing wave patterns at the centre
frequency are minimized.

— The impedance of each stack tuner rises rapidly outside
the narrow band of frequencies around the center
frequency

— Each stack tuner is an open circuit at power frequency.




Details of the Line Trap

* Frequency response such that, its impedance peaks
at a value approaching 10 kohm at the centre
frequency.

* The line trap circuit at the centre frequency, acts as
an attenuator

* |Its impedance falls to a very low value at or around
power frequency (of order of 0.03 ohms at 50 Hz)

e Completely transparent at power frequency but
otherwise acts as a barrier between each stack tuner
circuit at the center frequency.

* Frequencies outside the band immediately adjacent
to the center frequency provide a voltage transfer
ratio of almost unity.

Operation Principle

1kV radial feeder configurationm including three fault locators |

2 km 3 km 3km 2km
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() sowee
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Vx| - |vy| = +ve quantity, upstream

vl - fvyl

It

-ve quantity, downstream




| Decision logic scheme |

1:10 10:1

i

10"b" & ‘" phases of line:

BUFFER

From locators connected
to"b" & "¢” phases of Line

e Data

— The source was represented by a simple lumped
equivalent circuit with parameters set to produce a
given symmetrical short circuit level at the bus-bar
and a reactance to a resistance ratio of 30 at power
frequency (50Hz).

— The ratio of the source zero to positive sequence
impedance is unity and the equivalent power
frequency impedance of the line is

* 0.54 +j0.64 ohms per Km (positive phase sequence)
» 0.69 +j2.02 ohms per Km (zero phase sequence)

— The sampling frequency was set at approximately 200
kHz thereby enabling the response of the locator to
be examined for a center frequency of 90 kHz.




Simulation Results
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Operational Variables

* Type of faults

Fault resistance

Fault Inception Angle
Short Circuit Capacity of Bus-Bar (kVA level)
Suggested Works

— PSpice Simulation
— Matlab/Simulink
— MathCad Practice
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