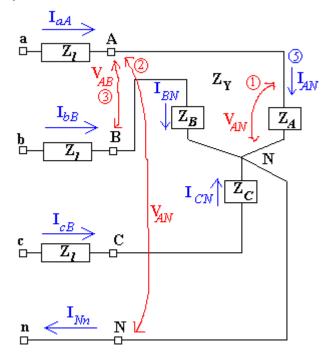
EECE 301 NETWORK ANALYSIS II

Dr. Charles Kim

Note 15: 3-phase system -- SUMMARY

- 1. Balanced $3-\phi$ system is characterized by:
 - 3 voltages are with same magnitude and 120° phase shift
 - 3 load impedances are same
 - Therefore, the currents are balanced with same magnitude and 120° apart
- 2. There are two types of voltages and two types of currents:
 - Phase Voltage (V_{ϕ}) = "voltage across a phase impedance"
 - Line Voltage (V_l) = "voltage between a (phase) line and another (phase) line"
 - Phase Current (I_{ϕ})= "current through a phase impedance"
 - Line Current (I_l) = "current through a (phase) line"
- 3. Above definitions have different meaning at different load formation, Y or Δ

<u>*Y*-load case</u>: As shown below, the three phase impedances (Z_A, Z_B, Z_C) form the letter "Y". In the figure, the line connecting 3-phase source to the Y-load is represented by a line impedance, Z_l .



 $V_{\varphi}\!\!=\!\!V_{AN},\,V_{BN},\,\text{and}\,\,V_{CN}$ (1)

i.e., phase voltage is same as the voltage between a (phase) line and the neutral (marked as "N") (2)

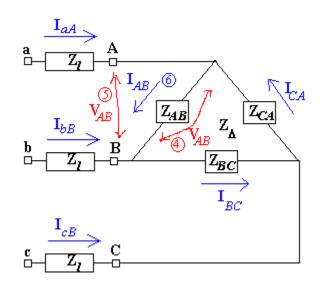
- $V_l = V_{AB}, V_{BC}, \text{ and } V_{CA}$ (3)
- $I_{\phi} = I_{AN}$, I_{NN} , and i_{CN}

 $I_{\it l} = I_{aA}, \, I_{bB}, \, and \, i_{cC} ~~(also, ~I_{AN} {=} I_{aA}, etc$)

Conclusion of Y-load:

(i) $I_{\phi} = I_l$ (ii) $V_{\phi} \neq V_l$ (instead, $V_l = \sqrt{3}V_{\phi} \angle 30^\circ$)

 Δ Load Case: As shown below, the 3 phase loads (Z_{AB}, Z_{BC}, and Z_{CA}) form a Delta shape. As in Y-load, the line connecting 3-phase source to the Y-load is represented by a line impedance, Z_l. Note that there is no neutral point.



 $V_{\phi}=V_{AB}, V_{BC}, \text{ and } V_{CA}$ (4) $V_{l}=V_{AB}, V_{BC}, \text{ and } V_{CA}$ (5) $I_{\phi}=I_{AB}, I_{BC}, \text{ and } i_{CA}$ $I_{l}=I_{aA}, I_{bB}, \text{ and } i_{cC}$

Conclusion of Δ -load:

(i)
$$\mathbf{I}_{\phi} \neq \mathbf{I}_{l}$$
 (instead $I_{l} = \sqrt{3}I_{\phi} \angle -30^{\circ}$) (ii) $\mathbf{V}_{\phi} = \mathbf{V}_{l}$

4. 3-Phase Power Calculations

Y-Load Case:

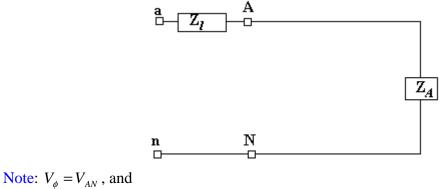
$$P_{3\phi} = 3V_{\phi}I_{\phi}\cos\theta_{\phi} = 3(\frac{V_{l}}{\sqrt{3}})I_{l}\cos\theta_{\phi} = \sqrt{3}V_{l}I_{l}\cos\theta_{\phi}$$
$$Q_{3\phi} = 3V_{\phi}I_{\phi}\sin\theta_{\phi} = \sqrt{3}V_{l}I_{l}\sin\theta_{\phi}$$

 Δ Load Case:

$$P_{3\phi} = 3V_{\phi}I_{\phi}\cos\theta_{\phi} = 3V_{l}(\frac{I_{l}}{\sqrt{3}})\cos\theta_{\phi} = \sqrt{3}V_{l}I_{l}\cos\theta_{\phi}$$
$$Q_{3\phi} = 3V_{\phi}I_{\phi}\sin\theta_{\phi} = \sqrt{3}V_{l}I_{l}\sin\theta_{\phi}$$

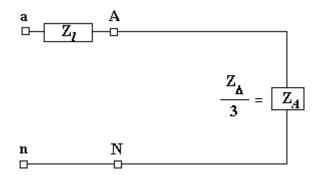
- 5. Single-Phase Equivalent Circuit
 - In a balanced 3-phase system, voltage and current magnitudes are same.
 - In a balanced 3-phase system, voltage and current are 120° apart from each other
 - Therefore, once a phase value is known, the other two are also known
 - <u>NOTE</u>: Single-phase equivalent circuit is formed so that a phase impedance is connected <u>between a phase (line) and the neutral</u>.

Y-load case: From the Y-load figure, let's delete two phases (B, and C), then the remaining circuit looks like below:



 $I_{\phi} = I_{aA}$

 Δ -Load Case: There is a slight problem here, since there is no neutral point. So we have to convert the load to Y-load equivalent. By the usual Δ -Y Transformation, we could get the Y impedance, in terms of Delta-load, as $Z_Y = \frac{Z_A}{3}$. Then the single-phase circuit looks like this:



NOTE: The voltage across the impedance in this single-phase circuit is **not** the actual phase voltage across the impedance. V_{AB} is the actual voltage across a impedance. So we have to convert the voltage, after your calculation of V_{AN} , to V_{AB} for a delta-load phase voltage.

$$V_{\phi} = V_{AB} = \sqrt{3} V_{AN} \angle 30^{\circ} \text{ and,}$$
$$I_{\phi} = I_{AB} = \frac{I_{aA}}{\sqrt{3}} \angle 30^{\circ}$$