EECE202 NETWORK ANALYSIS I

HOMEWORK #1 - Part 2 of 2

NOTE: Show your works

1. Find the equivalent resistance R_{ab} .

2. For the circuit shown below, find i_1 , i_2 , and v.

3. Find $i_{\rm o}$ and $i_{\rm g}$ in the circuit below.

4. The current through the 9 Ω resistor in the circuit is 1 [A]. Find V_s.

5. A shunt resistor and a 50mV, 1 mA d'Arsonval movement are used to build a (full scale) 10 [A] Ammeter. If a new resistance of 0.015 Ω is places across the terminals of the Ammeter, what is the new full scale of the Ammeter?

6. A 200k Ω is connected from the 100V terminal to the COM terminal of a dual-scale voltmeter as shown below. This modified voltmeter is then used to measure the voltage across the 600 k Ω resister in the circuit of below right. What is the reading of the 300V scale of the meter? Modified Voltmeter

7. Use Delta-to-Y transformation to find the voltages v_1 and v_2 in the circuit below.

8. The no-load voltage of the voltage-divider circuit is 150 [V]. The smallest load resistor (R_L) that is ever connected to the divider is 60 k Ω . When the load resistor is connected to the divider, the voltage of the load V_o should not drop below 100 [V]. (a) Specify the numerical values of R_1 and R_2 . (b) Assuming the power ratings of commercially available resistors are 1/16, 1/8, 1/4, 1, and 2 W, what power rating would you specify to the resistors R_1 and R_2 ?

