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Class Note 25: Second-Order Circuits

A. Preface
1. A second-order circuit is a circuit environment where an inductor and a capacitor are
present simultaneously.
2. The second-order circuit analysis is, in this class, is limited to one loop (series RLC) or
one non-reference node (parallel RLC) case.
3. PSPICE analysis practice is encouraged.

A. Basic Circuit Equation of Second-Order Circuit
1. Let’s first consider a parallel RLC circuit powered by a DC current source.
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2. Let’s assume that there is no energy initially stored in the capacitor and inductor.
3. The node voltage equation is:
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4. By derlvatlon with respect to time t, we have:
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5. Let’s now consider a series RLC circuit powered by a DC voltage source.
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6. Again, let’s assume that there is no energy initially stored in the capacitor and inductor.
7. The loop KVL equation for the current is:
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8. By derivation with respect to time t, we have:
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9. We can see that the equation for the node voltage in the parallel RLC [equation (1) above]
and the equation for the loop current in the series RLC [equation (2) above] are identical: a

second-order differential equation with constant coefficients.
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B. Solution of a Second-Order differential Equation (part 1: solution for forced function)
1. Let’s change equations (1) and (2) to a more general second-order differential equation
form:
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2. As we did in the first-order analysis, the solution of the equation (3) is:
X(©) = X, (1) + X, (1)

where, x(t) =x, (t)is a solution to d d)t(gt) +a, d);(tt) R e — (3a)

d?x(t) dx(t)
+
a O dt
3. Let's observe equation (3a) for a while. Since the right hand side is a constant K, therefore
Xp(t) must be a constant (at left hand side). Let say xp(t)=C (C is a constant), then the left

hand side is: a,C . Therefore, x,(t) =C :ﬁ.
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4. The, the complete solution of equation (3) is of the form:

K0 =%, )+ %, 0) =+, (1)
a2
5. The solution of the homogeneous equation for x.(t) [eq. (4)] starts in the next section.

and x(t) =x_(t) is a solution to +a,X(t)=0 4)

C. Solution of a Second-Order differential Equation (part 2: solution for homogeneous eq.)
1. For simplicity (you will see why soon), let’s rewrite the equation (4), by simple

substitutions for a, =2a and a, =w,’, in the form of:
d?x(t) dx(t) 2
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*Note: For this revised equation form, X (t) =—; since a, =w,".
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2. We assume a solution that: x_(t) = Ae*
3. The substitution of the assumed solution into equation (5) yields
s?Ae™ +2asAe™ +wAe™ =0

4. Simplification of the above equation yields to: (s* + 2as +W02)AeSt =0

Since x,(t) = Ae* cannot be zero, s* +2as + W02 e (6)
5. The equation (6) is called the characteristic equation, where

a is referred to Neper Frequency

w, is referred to Undamped Natural Frequency (or Resonant Frequency)

and [ij is referred to Exponential Damping Ratio.

(0]
6. If the characteristic equation is satisfied, then, the assumed solution x(t) = Ae* is correct.
7. Employing the quadratic formula, the roots for the characteristic equation are:
—2a+2\a’-w’
s= 5 =—gt.a-w,
8. Therefore, the two roots are:




S, =

—a+ a*-w,’ and s, =-a-+a’-w,’

9. This means that we have two solutions of the homogeneous equation:

x (t) = Ae* and x,(t) = Ae™

10. Note that the sum of two solutions is also a solution. Therefore, in general the solution of
the homogeneous equation is of the form:

()= A + A oo

11. Finally, the solution for the original second-order equation of

12. From the solution, we can easily see the final value: x(c0) =—.
W,

dt
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with, s, =-a +a’-w,> and S,=-Q — a’ —WO2 :
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D. Examination of the solution of the homogeneous equation: Natural Frequency Analysis
1. Let’s have a closer examination of the roots of the characteristics roots:

s,=—a+ya’-wS’ and s,=-a-ya’-w,’

2. The roots s1 and s2 are called the natural frequencies because they determine the natural

(unforced) r

esponse of the network.

3. We see that the roots are dependent upon the value of (a® — woz) .
4. If a®= wo2 : the roots are real and equal --> “Critically Damped”

If a®> WOZZ the roots are real and unequal --> “Overdamped”

If a®< woz: the roots are complex numbers --> “Underdamped”
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5. “Critically Damped” case: (real and equal s)
(a) Condition: @’ =w,” = s, =s, =-a
(b) Solution Form: x(t) = x(c0) + D,te™ + D,e™™
[Note: x(t) =x(c0)+Ae™ +Ae™ =(A +A)e™ =Ae™™. This simple form,

. . . . . dx(t
however, in general does not satisfy the two initial conditions, i.e., x(0) and ax(®)

t=0
with the single constant Az. After applying an approach for repeated roots, the
solution for critically damped case is of the form: x(t) = x() + Ae™ (A +At)]
(c) Constraints (equations to find the two coefficients, D1, and D,):
i) X(0) =x() +D,

Lo dx(t
ii) %L:O =D, -aD,

6. “Overdamped” case: (real and unequal s)
(a) Condition: a® >w,’
(b) Solution: x(t) = x() + Ae™ + Ae™
(c) Constraints (or equations to find two coefficients A; and A,)

i) x(0) = X(w) + A + A,
i) 2 =5 a +s,h,

7. “Underdampled” case: (complex s)
(a) Condition: a® <w,’. Also define w, =w,” —a’
The roots are rewritten as:
s, =-a+ j\/m=—a’+ jwy, and s, =-a- j\/m:—a— Jw,
Then, the solution can be rewritten as:
X(t) = x(c0) + Ale—(a—wd 4 Aze—(a+jwd )t
= x(e) +e " [Ae™ + Ae]
= x(c0) +e "[A{cosw,t + jsinw,t}+ A {cosw,t — jsinw,t}]
= X(e0) +e[(A + A)coswyt + j(A — A)sinw,t]
= x(0) +e*[B, cosw,t + B, sin w;,t]
(b) The solution form: x(t) = x(e0) +e™*[B, cosw,t + B, sinw,t]
(c) Constraints (Coefficient equations)
i) X(0) = x(c0) + B,

.. dx(t
i) %L:o =-a,B, +w,B,



Second-Order Equation Summary Table

Second-Order d2

i ; X dx
Differential ot 20—+ a)ozx =K
Equation dt dt
Final Value K

X(0) =—
WO

Characteristics 2 2 2 2
ROOtS s, =-a+.a’-w,” and s, =-a —\ja’-w,
S| Damping Types | Overdapmed case Underdamped case Critically Damped case
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Condition

aZ > a)OZ

2
a’ <w,

a’=w)’

Solution Form

x(t) =

X(00) + A + A0

+B,e ™ sinw,t

X(c0) +B,e ™ cos w,t

X(c0) +D,te™ +D,e™

Coefficient
Determination
Relationship

o)
dt

X(0) = X(e0) + A + A,

ox(t)

|t=0 =5, A +5,A, dt

x(0) = X() + B,

|t=0 =-oB, +w,;B,

x(0) = x() + D,
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at |t=0 =D, —ab,
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E. Parallel RLC Natural Response Example
Consider the parallel RLC circuit shown below. Let’s assume that the initial conditions on the

storage elements are: i (0)=-1[A] and v¢(0)=4 [V]. Find the node voltage v(t) and the current
through the inductor i (t).

SOLUTION:

F. Series RLC Natural Response Example

The switch in the circuit has been closed for a long time. At t=0, the switch opens. Find i(t).
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SOLUTION:



G. Step Response of Parallel RLC Example
Energy is stored in the circuit before the DC current source is applied, with i (0) =0.29[A] and

v (0) =5[V]. Find i(t).
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SOLUTION

H. Step Response of Series RLC Example

Find vc(t).
028 0.1H
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SOLUTION:



I. RLC Response Extra Problems

I.1. The switch in the circuit has been in position 1 for a long time. At t=0, it moves from
position 1 to position 2. Compute i(t) for t>0 and use this current to determine the voltage

v(t).

I.2. The switch in the circuit has been in position 1 for a long time. At t=0, it moves from
position 1 to position 2. Compute v(t) for t>0.
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1.3. Find v(t) and i(t)
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