EECE202 NETWORK ANALYSIS I

Class Note 25: Second-Order Circuits

A. Preface

- 1. A second-order circuit is a circuit environment where an inductor and a capacitor are present simultaneously.
- 2. The second-order circuit analysis is, in this class, is limited to one loop (series RLC) or one non-reference node (parallel RLC) case.
- 3. PSPICE analysis practice is encouraged.

A. Basic Circuit Equation of Second-Order Circuit 1. Let's first consider a parallel RLC circuit powered by a DC current source.

- 2. Let's assume that there is <u>no</u> energy initially stored in the capacitor and inductor.
- 3. The node voltage equation is:

$$-I_{s} + \frac{v}{R} + \frac{1}{L} \int_{t_{o}}^{t} v dx + C \frac{dv}{dt} = 0 \longrightarrow \frac{v}{R} + \frac{1}{L} \int_{t_{o}}^{t} v dx + C \frac{dv}{dt} = I_{s}$$

4. By derivation with respect to time *t*, we have:

5. Let's now consider a series RLC circuit powered by a DC voltage source.

6. Again, let's assume that there is <u>no</u> energy initially stored in the capacitor and inductor.7. The loop KVL equation for the current is:

$$-V_s + Ri + \frac{1}{C} \int_{t_o}^t i(x) dx + L \frac{di}{dt} = 0 \longrightarrow Ri + \frac{1}{C} \int_{t_o}^t i(x) dx + L \frac{di}{dt} = V_s$$

8. By derivation with respect to time *t*, we have:

9. We can see that the <u>equation for the node voltage</u> in the parallel RLC [equation (1) above] and the <u>equation for the loop current</u> in the series RLC [equation (2) above] are identical: a second-order differential equation with constant coefficients.

B. Solution of a Second-Order differential Equation (part 1: solution for forced function)
1. Let's change equations (1) and (2) to a more general second-order differential equation form:

$$\frac{d^2 x(t)}{dt^2} + a_1 \frac{dx(t)}{dt} + a_2 x(t) = K \quad -----(3)$$

2. As we did in the first-order analysis, the solution of the equation (3) is: $x(t) = x_p(t) + x_c(t)$

where,
$$x(t) = x_p(t)$$
 is a solution to $\frac{d^2 x(t)}{dt^2} + a_1 \frac{dx(t)}{dt} + a_2 x(t) = K$ -----(3a)
and $x(t) = x_c(t)$ is a solution to $\frac{d^2 x(t)}{dt^2} + a_1 \frac{dx(t)}{dt} + a_2 x(t) = 0$ -----(4)

3. Let's observe equation (3a) for a while. Since the right hand side is a constant K, therefore $x_p(t)$ must be a constant (at left hand side). Let say $x_p(t)=C$ (C is a constant), then the left K

hand side is: a_2C . Therefore, $x_p(t) = C = \frac{K}{a_2}$.

4. The, the complete solution of equation (3) is of the form:

$$x(t) = x_p(t) + x_c(t) = \frac{K}{a_2} + x_c(t)$$

5. The solution of the homogeneous equation for $x_c(t)$ [eq. (4)] starts in the next section.

C. Solution of a Second-Order differential Equation (part 2: solution for homogeneous eq.)

1. For simplicity (you will see why soon), let's rewrite the equation (4), by simple substitutions for $a_1 = 2\alpha$ and $a_2 = w_a^2$, in the form of:

$$\frac{d^2 x(t)}{dt^2} + 2\alpha \frac{dx(t)}{dt} + w_o^2 x(t) = 0 \quad -----(5)$$

*Note: For this revised equation form, $x_p(t) = \frac{K}{w_o^2}$ since $a_2 = w_o^2$.

- 2. We assume a solution that: $x_c(t) = Ae^{st}$
- 3. The substitution of the assumed solution into equation (5) yields $s^{2}Ae^{st} + 2\alpha sAe^{st} + w_{a}^{2}Ae^{st} = 0$
- 4. Simplification of the above equation yields to: $(s^2 + 2\alpha s + w_a^2)Ae^{st} = 0$

Since
$$x_c(t) = Ae^{st}$$
 cannot be zero, $s^2 + 2\alpha s + w_o^2 = 0$ -----(6)

5. The equation (6) is called the <u>characteristic equation</u>, where α is referred to *Neper Frequency* w_a is referred to *Undamped Natural Frequency* (or *Resonant Frequency*)

and
$$\left(\frac{\alpha}{w_o}\right)$$
 is referred to *Exponential Damping Ratio*.

6. If the characteristic equation is satisfied, then, the assumed solution $x(t) = Ae^{st}$ is correct. 7. Employing the quadratic formula, the roots for the characteristic equation are:

$$s = \frac{-2\alpha \pm 2\sqrt{\alpha^2 - w_o^2}}{2} = -\alpha \pm \sqrt{\alpha^2 - w_o^2}$$

8. Therefore, the two roots are:

$$s_1 = -\alpha + \sqrt{\alpha^2 - w_o^2}$$
 and $s_2 = -\alpha - \sqrt{\alpha^2 - w_o^2}$

9. This means that we have two solutions of the homogeneous equation:

$$x_1(t) = A_1 e^{s_1 t}$$
 and $x_2(t) = A_2 e^{s_2}$

10. Note that the sum of two solutions is also a solution. Therefore, in general the solution of the homogeneous equation is of the form:

$$x_c(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
(7)

11. Finally, the solution for the original second-order equation of

$$\frac{d^2 x(t)}{dt^2} + 2\alpha \frac{dx(t)}{dt} + w_o^2 x(t) = K$$

is:

$$x(t) = \frac{K}{w_o^2} + x_c(t) = \frac{K}{w_o^2} + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

with,
$$s_1 = -\alpha + \sqrt{\alpha^2 - w_o^2}$$
 and $s_2 = -\alpha - \sqrt{\alpha^2 - w_o^2}$

12. From the solution, we can easily see the final value: $x(\infty) = \frac{\kappa}{w_a^2}$.

D. Examination of the solution of the homogeneous equation: Natural Frequency Analysis

1. Let's have a closer examination of the roots of the characteristics roots:

$$s_1 = -\alpha + \sqrt{\alpha^2 - w_o^2}$$
 and $s_2 = -\alpha - \sqrt{\alpha^2 - w_o^2}$

- 2. The roots s1 and s2 are called the natural frequencies because they determine the natural (unforced) response of the network.
- 3. We see that the roots are dependent upon the value of $(\alpha^2 w_a^2)$.
- 4. If $\alpha^2 = w_0^2$: the roots are *real and equal* --> "Critically Damped"
 - If $\alpha^2 > w_o^2$: the roots are *real and unequal* --> "Overdamped"
 - If $\alpha^2 < w_o^2$: the roots are *complex numbers* --> "Underdamped"

5. "Critically Damped" case: (real and equal *s*)

- (a) Condition: $\alpha^2 = w_o^2 \Rightarrow s_1 = s_2 = -\alpha$
- (b) Solution Form: $x(t) = x(\infty) + D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}$ [Note: $x(t) = x(\infty) + A_1 e^{-\alpha t} + A_2 e^{-\alpha t} = (A_1 + A_2) e^{-\alpha t} = A_3 e^{-\alpha t}$. This simple form,

however, in general does not satisfy the two initial conditions, i.e., x(0) and $\frac{dx(t)}{dt}$

with the single constant A₃. After applying an approach for repeated roots, the solution for critically damped case is of the form: $x(t) = x(\infty) + A_3 e^{-\alpha t} (A_1 + A_2 t)$]

(c) Constraints (equations to find the two coefficients, D_1 , and D_2):

i)
$$x(0) = x(\infty) + D_2$$

ii) $\frac{dx(t)}{dt}\Big|_{t=0} = D_1 - \alpha D_2$

6. "Overdamped" case: (real and unequal *s*)

(a) Condition: $\alpha^2 > w_o^2$

(b) Solution:
$$x(t) = x(\infty) + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

(c) Constraints (or equations to find two coefficients A_1 and A_2)

i)
$$x(0) = x(\infty) + A_1 + A_2$$

ii) $\frac{dx(t)}{dt}\Big|_{t=0} = s_1 A_1 + s_2 A_2$

7. "Underdampled" case: (complex s)

(a) Condition: $\alpha^2 < w_o^2$. Also define $w_d = \sqrt{w_o^2 - \alpha^2}$ The roots are rewritten as: $s_1 = -\alpha + j\sqrt{w_o^2 - \alpha^2} = -\alpha + jw_d$ and $s_2 = -\alpha - j\sqrt{w_o^2 - \alpha^2} = -\alpha - jw_d$ Then, the solution can be rewritten as: $x(t) = x(\infty) + A_1 e^{-(\alpha - w_d)t} + A_2 e^{-(\alpha + jw_d)t}$ $= x(\infty) + e^{-\alpha t} [A_1 e^{jw_d t} + A_2 e^{-jw_d t}]$ $= x(\infty) + e^{-\alpha t} [A_1 \{\cos w_d t + j \sin w_d t\} + A_2 \{\cos w_d t - j \sin w_d t\}]$ $= x(\infty) + e^{-\alpha t} [A_1 \{\cos w_d t + j \sin w_d t\} + A_2 \{\cos w_d t - j \sin w_d t\}]$ $= x(\infty) + e^{-\alpha t} [A_1 \cos w_d t + B_2 \sin w_d t]$ (b) The solution form: $x(t) = x(\infty) + e^{-\alpha t} [B_1 \cos w_d t + B_2 \sin w_d t]$ (c) Constraints (Coefficient equations)

i)
$$x(0) = x(\infty) + B_1$$

ii) $\frac{dx(t)}{dt}\Big|_{t=0} = -\alpha_1 B_1 + \omega_d B_2$

Second-Order	Equation	Summary	Table
--------------	----------	---------	-------

S D E	econd-Order ifferential quation	$\frac{d^2 x}{dt^2} + 2\alpha \frac{dx}{dt} + \omega_0^2 x = K$			
Final Value		$x(\infty) = \frac{K}{w_o^2}$			
Characteristics Roots		$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$ and $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$			
S o	Damping Types	Overdapmed case	Underdamped case	Critically Damped case	
l u	Condition	$\alpha^2 > \omega_0^2$	$\alpha^2 < \omega_0^2$	$\alpha^2 = \omega_0^2$	
t I o	Solution Form $x(t) =$	$x(\infty) + A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$x(\infty) + B_1 e^{-\alpha t} \cos \omega_d t$ $+ B_2 e^{-\alpha t} \sin \omega_d t$	$x(\infty) + D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}$	
n s	Coefficient Determination Relationship	$\frac{x(0) = x(\infty) + A_1 + A_2}{\frac{dx(t)}{dt}}\Big _{t=0} = s_1 A_1 + s_2 A_2$	$x(0) = x(\infty) + B_1$ $\frac{dx(t)}{dt}\Big _{t=0} = -\alpha B_1 + \omega_d B_2$ $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$	$\frac{x(0) = x(\infty) + D_2}{\frac{dx(t)}{dt}}\Big _{t=0} = D_1 - \alpha D_2$	

E. Parallel RLC Natural Response Example

Consider the parallel RLC circuit shown below. Let's assume that the initial conditions on the storage elements are: $i_L(0) = -1[A]$ and $v_c(0) = 4$ [V]. Find the node voltage v(t) and the current through the inductor $i_L(t)$.

SOLUTION:

F. Series RLC Natural Response Example

The switch in the circuit has been closed for a long time. At t=0, the switch opens. Find i(t).

SOLUTION:

G. Step Response of Parallel RLC Example

Energy is stored in the circuit before the DC current source is applied, with $i_L(0) = 0.29$ [A] and $v_C(0) = 5$ [V]. Find $i_L(t)$.

SOLUTION

H. Step Response of Series RLC Example Find $v_C(t)$.

SOLUTION:

I. RLC Response Extra Problems

I.1. The switch in the circuit has been in position 1 for a long time. At t=0, it moves from position 1 to position 2. Compute i(t) for t>0 and use this current to determine the voltage v(t).

I.2. The switch in the circuit has been in position 1 for a long time. At t=0, it moves from position 1 to position 2. Compute v(t) for t>0.

I.3. Find v(t) and i(t)

