EECE202 NETWORK ANALYSIS I

Dr. Charles J. Kim

Class Note 16:

Node-Voltage Method vs. Mesh-Current Method - which is better and when?

General (meaning "not always true") selection rule:

Pick one which results in fewer equations by comparing the number of:

- (a) unknown node voltages and
- (b) unknown mesh currents.

Adage

"Some time spent thinking about the circuit analysis problem in relation to the various approaches (node and mesh included) is time well spent."

CASE 1:

The question with the circuit below is to find the power dissipated in the 10 Ω resistor. Which method, node or mesh, do you want to pick?

Let's apply the general rule to select a better approach.

SOLUTION

- (1) Strategy? : Find the current through the 10 Ω resistor (i₁₀) since P₁₀=(i₁₀)²(10).
- (2) Nodes: 3 + reference

Meshes: 3 but (one is already known with 19.6)

(3) Verdict: Mesh-Current Method.

Let's marks the mesh currents as follows.

See that the mesh current i_c is the same as the source current, 19.6. Also, i_{10} now is: $i_{10} = i_b - i_c$

(4) Calculation.

@ Mesh a: $25(i_a - 19.6) + 15i_a + 10(i_a - i_B) = 0 - 5i_a - i_b = 49 - (1)$ @ Mesh b: $35(i_b - 19.6) + 10(i_b - i_a) + 55i_b = 0 - 10i_a + 100i_b = 686 - (2)$ By (1)*2 + (2): $98i_b = 784$, therefore, $i_b = 8$ and $i_a = 11.4$ Then $i_{10} = i_b - i_a = -3.4$. Finally, P10 = $(i_{10})^2(10) = 115.6$ [W].

CASE 2: From the case 1, we inserted a 25Ω resistor and the question again is to find the power dissipated in the 10 Ω resistor. What method are you going to apply?

SOLUTION: Nodes: 3 + Reference (3 variables) Meshes: 4-1 =3 (3 variables). Verdict: ?????

