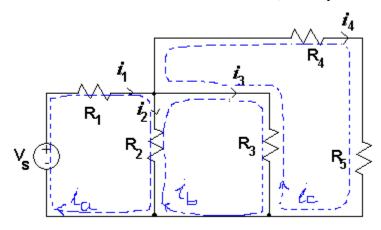
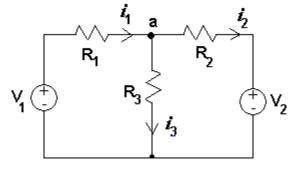

EECE 202 NETWORK ANALYSIS I

Dr. Charles J. Kim

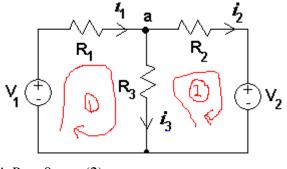

Note14: Why Do We Need Additional Methods in Circuit Analysis -2. Mesh Current Method

A. Mesh Current Method

- 1. Now we discuss the second part of the methods.
- 2. By the way, let's discuss about the identity of *mesh current* first. What the heck is this illusive, non-physical current?
- 3. The tem "current" we use is the current through an element, or "element current."
- 4. On the other hand, *mesh current* is defined as the *current that exists only in the perimeter of a mesh*.
- 5. In a simple circuit like one shown below, the term "current only in the perimeter" is not confusing at all. The mesh current along the only mesh, I_a, is the same as the element currents (or branch currents) I₁=I₂. Mesh current in this case is a physical entity, i.e., a measurable variable. Good. Let's move on.



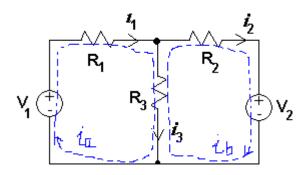
6. But, how about the circuit below? Since we have 3 meshes and the mesh currents are indicate as I_a, I_b, and I_c. And we have 4 branch currents (and they are measurable!).


- 7. Some questions:
 - Q1: Does mesh current I_a in the drawing imply that the current through R_1 is same as the current through R_2 ? Violation of KCL!!
 - Q2: How come two current mesh (I_a and I_b) are assigned for a current through a resistor (R_2)? Same for I_b and I_c for R_3 ?
 - Q3: Are the mesh currents are measurable and physical?
 - Q4: Why do we need these ghost currents to solve circuit problems?
 - Q5: Any benefit using them? -This is the most relevant question on mesh analysis.

- 8. The benefit of using mesh current is explained using the following example.
- 9. Let's use only **branch currents** for the following circuit.

10. Since there are three current variables, i_1 , i_2 , and i_3 , we know we need 3 equations. KCL at node a: $i_1 = i_2 + i_3$ or $i_3 = i_1 - i_2$ -----(1)

KVL at two loops: (See drawing below)


Loop 1: $-V_1 + i_1R_1 + i_3R_3 = 0$ -----(2) Loop 2: $V_2 + i_2R_2 - i_3R_3 = 0$ ----(3)

So we have three equations for the three variables; (1), (2), and (3).

- 11. Now, we see that, by the substitution of i_3 from (1) for (i_1-i_2) at the equations (2) and (3), we can reduce the number of equations to 2:
- (2) ----> $-V_1 + i_1 R_1 + (i_1 i_2) R_3 = 0$ ----(1)'

(3) ----->
$$V_2 + i_2 R_2 + (i_2 - i_1) R_3 = 0$$
 ----(2)'

12. Now, let's define the currents in the perimeters as two <u>mesh currents</u> i_a and i_b . Note that the branch current i_1 is same as i_a , and $i_b=i_2$.

- 13. Also, we can see that the branch current i3 is the net current of two mesh currents, i.e., $i_3 = i_a i_b$
- 14. Then, if we directly apply KVL on the loops, we have: Left Loop: $-V_1 + i_1R_1 + i_3R_3 = -V_1 + i_aR_1 + (i_a - i_b)R_3 = 0$...(1)" Right Loop: $V_2 + i_2R_2 - i_3R_3 = V_2 + i_bR_2 - (i_a - i_b)R_3 = 0$...(2)"
- 15. What's the point then?
 - a. When we use branch currents only, we need 3 equations to find all three current variables: equations. After some substitutions, they are reduced to 2 equations.
 - b. When we define and use mesh currents, then we can get the same 2 equations directly from KVL.
- 16. We can say this statement, then, that mesh current method is actually applying KVL around a mesh with "net voltage drop" across an element.
- 17. Here is the order of mesh current method application:
 - a. Assign mesh currents to the meshes
 - b. Using Ohm's Law, express the voltages in a mesh in terms of the mesh current
 - c. Apply KVL to each mesh
 - d. Solve the resulting simultaneous equation to get the mesh current

B. Other methods and tools

- 1. In addition to the node method and the mesh method, we are going to study the following analysis techniques:
 - a. Source transformation
 - b. Thevenin equivalent circuit
 - c. Superposition
- 2. Yes, the Laws are enough, but some methods derived from the Laws add some convenience like reduced number of equations, circuit simplification, and circuit equivalence.