EECE202 Network Analysis I

Class note 11: Superposition

A. Superposition

- 1. If a circuit has two or more independent sources, one way to analyze the circuit is to use nodal or mesh method.
- 2. Another way of analysis is to determine the contribution of each independent source and then add them up. This approach is called the <u>superposition</u>.
- 3. The superposition principle: "the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone."
- 4. Steps of Applying Superposition Principle:
 - (a) Deactivate all independent sources except one source. Find the output (V or I) due to that active source.
 - (b) Repeat step (a) for each of the other independent sources.
 - (c) Find the total contribution by adding algebraically all the contributions due to the independent sources.
- 5. Caveat: Some weakness and caution
 - (a) Applying the superposition may very likely involve more works.
 - (b) Since the principle is based on linearity, you <u>cannot</u> directly apply it to the <u>power</u> due to each source: power absorbed by a resistor depends on the square of the voltage or current.¹ Therefore, if power value is needed, the current through (or voltage across) the element must be calculated first using superposition.

B. Example 1

Find V in the circuit using the superposition theorem,

Solution:

- (a) Contribution by 6V voltage source: V' V'=6*(4/12)=2 [V]
 (c) Therefore, V=V'+V''=10 [V]
- (b) Contribution by 3A current source: V'' V''=4*(3*(8/12))=8 [V]

¹ For example, when current i_1 flows through resistor R, the power is $P_1 = R * i_1^2$, and when current i_2 flows through R, the power is $P_2 = R * i_2^2$. If current (i_1+i_2) flows through R, the power is $P_3 = R * (i_1+i_2)^2$, and $P_3 \neq (P_1+P_2)$. Power relation is nonlinear.

C. Another Example

Use superposition to find voltage V in the circuit shown below.

(i) Strategy: The total (combined) voltage V is the sum of the voltage V' (with 70V source only) and the voltage V'' (with 50V source only).

(ii) Analysis Method: 3 essential nodes and the reference with a known node voltage. So we apply the node-voltage method.

(iii) 70V Source only.

With 70V only, V'=V₂. Constraints: V₂-V₁=2i_b and i_b=(70-V₂)/4. ---->2V₂-2V₁=70-V₂ or $V_1 = \frac{3V_2 - 70}{2}$ ---(1) @ node 1: $\frac{V_1 - 70}{20} + \frac{V_1}{2} + i_x = 0$ with $i_x = -i_b + \frac{V_2}{10} = -\frac{70 - V_2}{4} + \frac{V_2}{10}$ Therefore, we have: $\frac{V_2 - 70}{4} + \frac{V_2}{10} + \frac{V_1 - 70}{20} + \frac{V_1}{2} = 0$ The simplified equation is: $11V_1 + 7V_2 = 420$ ------(2) From (1) and (2): we have V'=V_2=34.25 [V]

With 50V only, $V''=V_2$.

(e) Finally, the combined Voltage: V=V'+V''=34.25 + () = () [V]