
11/7/2011

1

Branching and Looping

EECE416 uC

Fall 2011

Unconditional Jumps
• jmp

– Like a goto in a high-level language
– Format: jmp StatementLabel
– The next statement executed will be the one at
StatementLabel:

• jmp Encoding
– Relative short encodes a single byte signed displacement telling how far forward or

backward to jump for the next instruction to execute – the assembler uses this format if
possible

– Relative near encodes a signed doubleword displacement – this allows a forward or
backward jump essentially anywhere in memory

– Indirect forms that encode the address of the destination in a register or memory are not
often used

• Program Design using jmp for 1+2+3+… forever
number := 0;
sum := 0;
forever loop

add 1 to number;
add number to sum;

end loop;

faculty
Typewritten Text
WWW.MWFTR.COM

11/7/2011

2

Program Code
; program to find sum 1+2+...+n for n=1, 2, ...
.586
.MODEL FLAT
.STACK 4096
.DATA
.CODE
main PROC

mov ebx,0 ; number := 0
mov eax,0 ; sum := 0

forever: inc ebx ; add 1 to number
add eax, ebx ; add number to sum
jmp forever ; repeat

main ENDP
END

Debugging

11/7/2011

3

Conditional Jumps
• Format: j-- targetStatement
• The last part of the mnemonic identifies the condition under which

the jump is to be executed
• If the condition holds, then the jump takes place and the statement

executed is at targetStatement:
• Otherwise, the next instruction (the one following the conditional

jump) is executed
• Used to implement if structures, other selection structures, and loop

structures in 80x86 assembly language
• Most “conditions” considered by the conditional jump instructions are

settings of flags in the flags register.
• Example

jz endWhile

– jump to the statement with label endWhile if the zero flag ZF is set to 1
• Conditional jump instructions don’t modify flags; they react to

previously set flag values

cmp Instruction
• Most common way to set flags for conditional

jumps
• Format: cmp operand1, operand2
• Flags are set the same as for the subtraction

operation {operand1 – operand2}
• Operands are not changed
• cmp does set or clear flags

– CF: Carry flag (when there is borrow (‘No Carry” in
subtraction)

– OF: Overflow (Overflow)
• OF={ Carry out from msb} XOR {Carry in to msb}

– SF: msb (Sign bit) is 1
– ZF: Result is zero

11/7/2011

4

Flag revisited – Example

Flags – example & Sol

11/7/2011

5

Conditional Jumps To Use After
Signed Operand Comparison

mnemonic jumps if

jg jump if greater SF=OF and ZF=0
jnle jump if not less or equal

jge jump if greater or equal SF=OF
jnl jump if not less

jl jump if less SF=/=OF
jnge jump if not above or equal

jle jump if less or equal SF=/=OF or ZF=1
jng jump if not greater

Conditional Jumps To Use After
Unsigned Operand Comparison

mnemonic jumps if

ja jump if above CF=0 and ZF=0
jnbe jump if not below or equal

jae jump if above or equal CF=0
jnb jump if not below

jb jump if below CF=1
jnae jump if not above or equal

jbe jump if below or equal CF=1 or ZF=1
jna jump if not above

11/7/2011

6

Some Other Conditional Jumps
mnemonic jumps if

je jump if equal ZF=1
jz jump if zero

jne jump if not equal ZF=0
jnz jump if not zero

js jump if sign (negative) SF=1

jc jump if carry CF=1

jo jump if overflow OF=1

Example of cmp and j--

cmp eax, nbr
jle smaller

•The jump will occur if the value in eax is
less than or equal to the value in nbr, where
both are interpreted as signed numbers

11/7/2011

7

if Example 1
Code

cmp ebx, 10
jnl elseLarge
inc smallCount
jmp endValueCheck

elseLarge: inc largeCount
endValueCheck:

•Assumptions
– value in EBX
– smallCount and largeCount in memory

if Example 2
Code

cmp total, 100
jge addValue
cmp ecx, 10
jne endAddCheck

addValue: mov ebx, value
add total, ebx

endAddCheck:

•Assumptions
– total and value in memory
– count in ECX

11/7/2011

8

While Example
Code

whileSum: cmp sum, 1000
jnl endWhileSum
add sum, ecx
inc ecx
jmp whileSum

endWhileSum:

•Assumptions
– sum in memory
– count in ECX

Until Example

Code
repeatLoop: add sum, ecx

add sum, ecx
inc ecx
cmp sum, 1000
jng repeatLoop

endUntilLoop:

•Assumptions
– sum in memory
– count in ECX

11/7/2011

9

Practice (for submission)
• Draw a flowchart for each of

the following Assembly
Codes

• (a)
cmp ecx, 0
jne endifa
mov ecx, value

endifa:

• (b)
cmp ecx, value
jng endifb
mov ecx, 0

endifb:

Practice (for submission)
• Draw flowcharts for the following

Assembly Codes
• (c)

mov ebx, a
add ebx, b
cmp ebx, c
jne elsec
mov al, 'Y'
jmp endifc

elsec: mov al, 'N'
endifc:

• (d)
cmp edx, -1000
jle thend
cmp edx, 1000
jnge endifd

thend: mov edx, 0
endifd:

11/7/2011

10

Practice (for submission)
• Draw a flowchart for the following

Assembly Code
• (e)

cmp al, 'a'
jnae else1
cmp al, 'z'
jnbe else1
inc lowerCount
jmp endif1

else1: cmp al, 'A'
jnae else2
cmp al, 'Z'
jnbe else2
inc upperCount
jmp endif2

else2: inc otherCount
endif2:
endif1:

What is this code for? (1) Flowchart & (2) Description (plain
English)

.586

.MODEL FLAT

.STACK 4096

.DATA
number DWORD 750

.CODE
main PROC

mov ecx, 0 ; x := 0
mov eax, 1 ; twoToX := 1

whileLE: cmp eax, number ; twoToX <= number?
jnle endWhileLE ; exit if not

body: add eax, eax ; multiply twoToX by 2
inc ecx ; add 1 to x
jmp whileLE ; go check condition again

endWhileLE:
dec ecx ; subtract 1 from x

mov eax, 0 ; exit with return code 0
ret

main ENDP
END

11/7/2011

11

loop instruction

• format: loop statementLabel

– statementLabel is the label of a statement
which is a short displacement from the loop
instruction

• Execution
– (a) ECX ECX – 1
– (b) If [ECX] =0, Go to next line
– (c) otherwise, jump to the Label
– The value in ECX is decremented
– If the new value in ECX is zero, then execution continues with

the statement following the loop instruction
– If the new value in ECX is non-zero, then a jump to the

instruction at statementLabel takes place

example of loop
Code

mov eax, 0
mov ecx, 20

forCount: add eax, ecx
loop forCount

•Assumptions
– sum in EAX
– count in ECX

11/7/2011

12

Example Code
.586
.MODEL FLAT
.STACK 4096

.DATA

.CODE
main PROC

mov ebx, 1 ;
mov eax, 0 ;
mov ecx, 0 ;

whilePoor: cmp eax, 100000000 ;
jnl endLoop ; exit if not

body: add eax, ebx ; add
add ebx, ebx ; multiply by 2
inc ecx ;
jmp whilePoor ; repeat

endLoop:
mov eax, 0 ; exit with return code 0
ret

main ENDP
END

Cautions
• If ECX is initially 0, then 00000000 will

be decremented to FFFFFFFF, then FFFFFFFE, etc., for
a total of 4,294,967,296 iterations

• The jecxz (“jump if ECX is zero”) instruction can be
used to guard a loop implemented with the loop
instruction

11/7/2011

13

Coding Assignment -- GCD calculation

• GCD (Greatest common divisor)
• Algorithm?

– Euclidean Algorithm
– Bezout’s Identity (for n1>n2)

• GCD(n1, n2) = GCD (n1-n2, n2)
– Keep the smaller number, and repeat the

process
– Until one of the numbers is 0
– Then, GCD is the non-zero number

GCD – Euclidean Algorithm

11/7/2011

14

Coding Assignment details
• 1. Draw a flow chart of the Euclidean gcd algorithm (Note:

You can use Binary GCD algorithm if you want.)
• 2. Write a Code which calculates GCD of 2 numbers,

which all (i.e., 2 inputs and outputs) are to be interactive
with users. Note that your code must match with your
flow chart (variable name, label, etc)

• 3. Submission
– Flow Chart (hand delivery): Thursday November 17, 2011

(5:10pm)
– 80X86 code (email submission) : Thursday November 17, 2011

(5:00pm)

• 4. Importance of the HW?
– The same weight as Exam 01

