WWW.MWFTR.C

EECE416 :Microcomputer Fundamentals and

Design (“Microcomputer & Microprocessor”)

A 32

Basic Architecture

Dr. Charles Kim

Department of Electrical and Computer Engineering

Howard University


faculty
Typewritten Text
WWW.MWFTR.COM


Contents to be covered

* Overview and Notational Convention

 Introduction to the Intel Architecture

e Basic Execution Environment

 Procedure Calls, Interrupts, and
Exceptions

« Data Types and Addressing Modes

e Instruction Set Summary

e Floating-Point Unit

* Programming with Intel MMX Technology

 Programming with the Streaming SIMD
Extensions




Notational Conventions

Bit and Byte Oder
Smaller address at the bottom of figure
Address increases toward top
Bit positions numbered from right to left

Little-Endian Machine

the bytes of a word are numbered starting from the least

significant byte

Data Structure

g';j'g'r‘;*‘i 31 24 23 16 15 8 7 0 <«— Bit offset
28
24
20
16
12
8
P owest
. — — . owes
B'_""L_ 3‘ B'_',".e 2 B‘_-,.fle 1 B"l.lrtt" :I' [: Address

)

Byte Offset



Conventions

|A Assembly Language
Instruction Format

Label: mnemonic argumentl, argument2, argument3

Label: Identifier (followed by a colon)

Mnemonic: a reserved name for a class of instruction opcodes which have the same function
Operands (arguments): The operands argumentl, argument2, and argument3 are optional.
There may be from zero to three operands, depending on the opcode. When present, they

take the form of either literals or identifiers for data items. Operand identifiers are either
reserved names of registers or are assumed to be assigned to data items declared in another

part of the program.

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

Example: LOADREG: MOV EAX, SUBTOTAL

label mnemonic  dst src

Binary and Hexadecimal Numbers

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where
confusion as to the type of number might arise.

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit Is a character from the following
set:0,1,2,3,4,5,6,7,8,9,A,B,C,D, E,and F.

Segmented Addressing

Byte addressing
Address space: Range of memory that can be addressed
Segmented Addressing: where a program may have many independent address spaces.

Example: Byte address within a segment

Segment-register:Byte-address
DS:FF79H (byte at address FF79H in the segment pointed by the DS register) 4



Conventions

Exceptions

an event that typically occurs when an instruction causes an
error.

Example: an attempt to divide by zero generates an exception.

Some exceptions, such as breakpoints, occur under other
conditions.

Some types of exceptions may provide error codes. An error
code reports additional information about the error.

#PF(fault code)

This example refers to a page-fault exception under conditions where an
error code naming a type of fault is reported.

Under some conditions, exceptions which produce
error codes may not be able to report an accurate
code. In this case, the error code is zero, as shown
below for a general-protection exception.

#GP(0)



Intel Architecture - History

First 1A Family member: o )

£l = fll =)
PITY = b safams
8086 9 8088 19 8 ‘.DIBES 5E:e'15)(53
[ ; Az s TP AT
D s 36 A18,55
avo]s 35[0 419,56
Cf. 4004 - 8080 - 8085 g wpsre stcoron rensac
. =L B = I EXECUTH | BUS INTERFACE uull
vl | RELDCATION
407 soss 2[R0 . REGISTER FILE REGISTER FILE
soefio cpu mfQRG/ETO (HOLD) SEGNENT
0] = BRI 30 ROSGTT (HLDA) DATA AEGISTERS
aoa]i2 mp ok (WR) FOINTER. AHD AND
. ) NOEX INSTRUETION
k] m G 252 (M A0) 18 WORDS) POINTER
. . anzic]i4 7[5 (OT/R} & WORDS,
16-bit registers, external data  =d: =gz @ T
b 351 = T s PR ase (ALE) ;]
] = b as (INT4) —
bus MR 18 250 TEsT L = L
[0y = I 22 P READY | BRE S
d= a1foreser 16 BIT ALY 8155y
o

20-bit addressing (= 1MB
address space) |

Segmentation (by 16-bit) : | oot
64KB e

4 Segmentation registers hold 1
4*64KB =256KB i —" L e

LT

I
5 -

H pi':L !

el
z
-1

|

I

|

Upto 256KB can be addressed ‘—@ ﬁz}

HLDA —— ]

without switching between T T T
Segments cle meser nchoy e i




|A History -continued

80286

Protected Mode
Segment register contents as selector or pointer - discriptor table

24-bit base address - 16MB memory size
Application protection

386

32-bit registers for operands and addressing(—=>4GB space)

Lower half of 32 bits is equivalent to 16 bits of earlier
generations [Backward (upward) compatibility with 16-bit
registers]

Some new instructions was added (like bit manipulation)
Max 4GB segmentation of physical space

New Parallel Processing Stages introduced: Bus Interface Unit,
Code Prefetch Unit, Instruction Decode Unit, Execution Unit,
Segment Unit (logical address = Linear address), Paging Unit
(Linear address - physical address) .



|A History - Continued

486

More parallel execution capability

Expansion of 386’s Instruction Decode and Execution Units into 5 pipeline
stages — 1 instruction per 1 CPU clock

L1 cache added

8 KB
Integration of floating-point math unit on to the same chip
More pins added to support multiprocessors

Energy saving and management capability added to 486 SL
Enhanced processors --- for battery operated notebook PC
market

Stop clock and auto halt powerdown features — reduced clock rate to save
power



|A History - Continued

486

More parallel execution capability

Expansion of 386’s Instruction Decode
and Execution Units into 5 pipeline
stages — 1 instruction per 1 CPU clock

L1 cache added
8 KB

Integration of floating-point math
unit on to the same chip

More pins added to support
multiprocessors

Energy saving and management
capability added to 486 SL
Enhanced processors --- for
battery operated notebook PC
market

Stop clock and auto halt powerdown
features — reduced clock rate to save
power




Insert — Cache Memory

CPU Cache Memory

a cache used by CPU to reduce the average time to access memory.

a smaller, faster memory which stores copies of the data from the most frequently
used main memory locations. As long as most memory accesses are to cached
memory locations, the average latency of memory accesses will be closer to the
cache latency than to the latency of main memory.

Multi-level caches generally operate by checking the smallest Level 1
(L1) cache first; if it hits, the processor proceeds at high speed. If the
smaller cache misses, the next larger cache (L2) is checked, and so on,
before external memory is checked.

As the latency difference between main memory and the fastest cache
has become larger, some processors have begun to utilize as many as
three levels of on-chip cache. For example, in 2003, Itanium 2 began
shipping with a 6 MB unified level 3 (L3) cache on-chip. The IBM Power 4
series has a 256 MB L3 cache off chip, shared among several

processors. == —— == —— -
|CF"U —
Redisters <:=='> I <::'

| =| Y =] L2
= Cache Cache =F T [i-

l ﬁ:b FLand | <::' =¥ |:> ED busses
=

: = I I:D (FCland

I

| I5A)
| < System bus >
L 1 10




|A History - continued

Pentiumi(r) lll Processor Architectural Block Diagram

Instruction Cache 16 Kbyte, 4-way | Dynamic Branch

Pentium T = EE
S econ d Exe cu tl on | il x parallel Instruction nuudu'—b eyl

Architectural
Register Fils

rlFP Register

Intege

Pipeline -2
pipelines (u and v)
-=> 2 instructions
per clock

L1 Cache

Reservation Station (20 Entries)

Store Load
P«d es-s -"u‘ldl'Pﬁ-i

Memaory Order Buffer
1.2 entry store, 16 antry load

s

Data Cache 16 KByte, 4-way

Reorder Buffer
{40 entries)

8KB for code
8KB for data — o M
MESI protocol for more d,l idin
efficient write-back mode i )
: : .
Registers: 32 bits i
S [ auna 4.@! Shared
Internal Data paths: i
128 and 256 bits v 11




|A History - continued

Pentium Pro

“Dynamic Execution” — 3 instructions per CPU
clock

8-KB L1 cache
256 KB L2 cache
36-bit address bus - 64 GB Physical Address

Block Diagra

12

The Intel Pentium !!!



|A History - continued

Pentium 11
MMX instructions added

MMX is a single instruction, multiple data (SIMD) instruction set
designed by Intel, introduced in 1996

MMX is officially a meaningless initialism trademarked by Intel.

MMX defined eight registers, known as MMO through MM7
(henceforth referred to as MMn)

Each of the MMn registers holds 64 bits (the mantissa-part of a full
80-bit FPU register). The main usage of the MMX instruction set is
based on the concept of packed data types, which means that
instead of using the whole register for a single 64-bit integer, two
32-bit integers, four 16-bit integers, or eight 8-bit integers may be
processed concurrently.

16 KB L1 Instruction, 16 KB L1 Data
256 (512, 1000) KB L2

Power Management: AutoHALT, Stop-Grant, Sleep,

13

Deep Sleep



|A History - continued

Pentium 111
Pentium Pro + Pentium |1

70 new instructions
For New SIMD-floating-point unit

summary

No. of
Date of | Perform | Max.CPU | Transis Main Extern. Max, Caches
Product -ance_ | Frequency | -torson CPU Data Extern. | in CPU
Intel Intro- in MIPs! at Intro- the Die | Register Bus Addr, Pack-
Processor | duction duction Size? Size® | Space age?
B0BG 1978 0a a MHz 29K 16 16 1 MBE Maone
Intel 286 1982 27 125 MHz 134 K 16 16 16 MB Mote 3
Intel326™ 1985 6.0 20 MHz 2T K 32 32 4GB Mote 3
DX
Intel426™ 1989 20 25 MHz 1.2M 32 32 4GB 8KB L1
DX
Pentium™® 1993 100 60 MHz 1M 32 64 4GB 16KB L1
FPentium= 1995 440 200 MHz 55M 3z Gid 64 GB | 16KBL1;
Pro 256KE or
512KE L2
Fentium IF 1997 466 peliti] 7 M 32 64 64 GB | 32KB L1;
2R6KE or
512KB L2
Pentium®_ 1999 1000 500 3.2 M 32 GP 64 G4 GB | 32KE L1:




|A History - continued

P6 Family Processor

1995
Most recent processor in 1A family
3-way superscalar, pipelined architecture: 4 units

System Bus

L2 Cache

[ Cache Bus

Bus Interface Unit

¢

:

L1 Instruction
Cache

L1 Data Cache

Fetch

Load

Store

Fetch/Decode
Unit

Dispatch/
Execute Unit

Retire Unit

A

Intel
Architecture
Reqgisters

il

Instruction | -

Pool

A

« 8 KB L1 Instruction cache
« 8 KB L1 Data cache
o 256 (512, 1000) KB SRAM L2
—> 64 bit cache bus
* Dynamic Execution (out-of-
order execution mechanism)
* Deep branch prediction
e Dynamic data flow
analysis
» Speculative execution-
ahead of program counter

15



|A History - continued

P6 Micro-
architecture geembe ey [ e

I 9
I i Cache Bus

I nstruction Bus Interface Linit j

J. I -
fetC h/d e CO d e r Instruction Fetch Linit Imstruction Cache (L1) |- - NEnitlF L

. | Mermaory
: Branch Reorder
u n It Instruction Cecoder * Target 5 ﬁﬂ“
- Buffer uHer
Simgple Simple Complex

Instruction Decoder | | Decoder | | Decoder | le—s| Mimcode | From
Instruction Integer
Sequencer Unit
Pool (reorder -
eqgister Alias Table
¥
b U ffe r) Retirement

Retirement Linit Register File Diata Cache

= {Int=! Arch. Uit (L1)

D I S patc h/ExeC | N Fearder Buffer i:ﬁstruction Pool) Registers) |

ute Unlt F{esewatii}n Station
Retirement swoee | [ Foatng || o I eoer 1] Moo |1

Execution Lint
= Unit Point Unit Unit Unit Interface
U N |t (FPU) (FPU) n = Unit

l’ r L

Intermal Data-Results Busas

16



EECE416 :Microcomputer Fundamentals and

Design (“Microcomputer & Microprocessor”)

A 32

Basic Execution Environment

As seen by assembly-language programmers

Dr. Charles Kim

Department of Electrical and Computer Engineering

Howard University



Modes of Operation

Operating mode determines which instructions and
architectural features are accessible - 3 Operating modes

Protected mode
Native State of Processor

All instructions and architectural features are available — highest
performance and capability

Recommended mode
Real-address mode

Programming environment of Intel 8086
Processor is in this mode following power-up or reset

System management mode (SMM)

Power management and system security

Enters SMM by SMM interrupt (SMI) or APIC (Advanced Programmable
Interrupt Controller)



Overview of Basic Execution

Set of resources for Executing instructions and for
Storing code, data, and state information

Resources:
Address space: 36 address lines

8 Gene ral data reg isters (SS:ENERAL Pé\T‘x‘\jAND ADD;?ESS REGISTERS
I AX EAX
6 Segment registers e
Status and control registers ox__|ecx
DX  |EDX
e Sl ESI
- ) DI EDI
BP  |EBP
Eight 32-Tut General-Purpose SP ESP
Fegisters Pegisters SEGMENT SE:.ECTOR RE%ISTERS
9
cs CODE
ss STACK
Six 16-bit i oS |
Eegisters Segment Registers Addres ES | DATA
Space® e
Gs
2 . e INSTRUCTION POINTER
32-hits | | EFLAGS Register AND FLAGS REGISTER
31 16 15 0
32-bits | | EIP (Instruction P ElP
Pomter Register) FLAGS |EFLAGS
] Figure 2-1. Intel386™ DX Base
*The address space can be flat or segmented. Architecture Registers
* Physical address space 15 2%%36-1

* Linear address space 1s 2¥%32-1 0 3



Memory Organization

Physical Memory
The memory -- the processor addresses on its bus
Organized as a sequence of 8-bit bytes

Each byte is assigned a unique address, a physical
address

Range: 36 address lines - 64 GB
Flat memory model (a single continuous address space) =2
linear address space 7334
Code, data, stack are all contained in this address space |.Mmoppr.  FLAT
Byte accessible
Segmented memory model (memory grouped into P STACK  yoté
Independent address spaces, segments) .DATA
Code, data, stacks are contained in separate segments
Logical address (segment selector and an offset) to address
Up to 16K segments of different sizes (max 64 GB)

Why segmentation:
Increase reliability of programs and systems — avoid overwriting

Real-Address Mode (Intel 8086 model)




Memory Management Model

Linear Address

-

Flat Model | {

Segmented Model

Offset

Linear
Address
Space®

/
Segments >

-
-

—Lincar |

|| Address

_Ab%grlecsaﬁl Segment Selector

- Space*
i

Real-Address Mode Model
Offset

,ﬁ,b%?ggagl Segment Selector

]

: Into Equal
Sized Segments £ . _

Linear Address
Space Divided | — — -

s
o NI

* The linear address space
can be paged when using the
flat or segmented model.




General Purpose Data Registers

Holding the following items (for all):
Operands for logical and arithmetic

General-Purpose Registers

operations
Operands for address calculations = T eax
Memory pointers iy
ESP (Stack pointer)holds the stack =X
pointer (restricted use) i~
ECX (Counter), ESI (Source pointer) , el
EDI (data pointer) for string instructions
EBP (base pointer to data on the stack in
DS Segment) Ky GE“ETELPU‘IFS';':E REQ‘;‘:TE 0 16-bit 32-bit
EDX (for 1/0 pointer) AH | AL | AX EAX
BH BL BX EEX
EAX (accumulator for operands and cH L CL o Eox
results data) 57 £8P
EBX (Pointer to data in Segment) = o
SP ESP

ESP points to the top item on the stack
and the EBP points to the "previous" top
of the stack before the function was
called.



egment registers

Hold 16-bit segment selectors Linear Address

. . Space for Program
Segment selector: a special pointer that
identifies a segment in memory seqment Registers i

Associated with 3 types of storage: o5 o
DS —— yies

Code (instructions are stored): CS + EIP 55 Beginning at

(O f fse t) Eg — Address 0

Data : DS, ES, FS, and GS GS—

The segment selector in

Stack (Procedure Stack is stored): SS each segment register

paoints to an overlapping

Segment selector < by Assembler segment in the inear
d|reCt|Ve Use of Segment Registers for Flat Memory Model
Flat (un-segmented) Memory Model Case:

Overlapped and starts at 0: Code Seg and L St
Data Seg and Stack Seg SeomentRegisters -

c3
Segmented Memory Model Case: S — Sk

ES
Fs > are mapped
to the same

Loaded with different segments, pointing o8 _
different segments i adiess

Data

Program can access 6 different segments segment

Data
Segment

To access a segment not pointed by the = [ Data
Segment registers? Load a segment I
selector to a segment register first. —

Y

Data
Segment

All segments

Use of Segment Registers in Segmented Memory Model

v



EFLAG Register

32-bit register
Initial state: 00000002H

Contains a group of status flags, a control flag, and a group of system
flags

313020252726 252423 222120191817 16151412121110 %2 &8 7 6 5 4 3 2 1 0

=
m A
=
mnLn

[

0o -

ID Flag (ID) |
Virtual Interrupt Pending (VIF)

Virtual Interrupt Flag (VIF)

Alignment Check (AC)

Wirtual-8086 Mode (VM)
Fesume Flag (RF)

Mested Task (NT)

b b > A

'O Privilege Level (IOPL)

5 Overflow Flag (OF)
C Direction Flag (DF)

Interrupt Enable Flag (IF)

Trap Flag (TF)

Sign Flag (SF)
Zero Flag (ZF)

Auxiliary Carry Flag (AF)

Parity Flag (PF)

0w W W

Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

> (W

Reserved bit positions. DO NOT USE.
Always sef to values previously read.



Status Flags

31302028272625242322212019181716151413121110 % 8 7 6 5 4 3 2 1 O

3 I=
=
o
o
_'
i

Cwverflow Flag (OF)
Too big (pos)
Too small (neg)?

Sign Flag (SF)
MSh=17?

Zero Flag (ZF)
Result=07?

Auxiliary Carry Flag (AF)
Parnty Flag (PF)

For BCD :
operation Even Numbero of 1's ~ Carry Flag (CF)

in LSB Carry or Borrow




Control Flag (DF)

DF (Direction Flag)

The direction flag controls the string instructions
(MOVS, CMPS, SCAS, LODS, and STOS).

DF=1 -> string instructions to auto-decrement (that
IS, to process strings from high addresses to low
addresses).

DF=0 -> string instructions to auto-increment
(process strings from low addresses to high
addresses).

STD - Set DF flag
CLD - Clear DF flag



System Flags

3302028 2726252423 222120191817 16151413 121110 &

g 7685 43 2140

01

-
min

ID Flag (ID)
CPUID

Virtual Interrupt Pending (VIP)
Int. Pending?

Virtual Interrupt Flag (VIF)

Alignment Check (AC)
Memory reference aligned?

Virtual-8086 Mode (VM)
1: 8086 mode
0: Protected mode

Fesume Flag (RF)
Response to debug exception

Trap Flag (TF)
Enable/Disable
Single-3Step Debug Mode

——Interrupt Enable Flag (IF)

Int. Respond/Inhibit

/O Privilege Level (IOFPL)
Current Proviledge Level <= 1/O
Privilige level

Nested Task (NT)

Task linked to another task?



	uC04_F11_IA32_BasicArchitecture.pdf
	LEC04_F11_IA32_BasicExecutionEnvironment



