
1

EECE416 :Microcomputer Fundamentals and
Design (“Microcomputer & Microprocessor”)

IA 32
Basic Architecture

Dr. Charles Kim
Department of Electrical and Computer Engineering

Howard University

faculty
Typewritten Text
WWW.MWFTR.COM

2

Contents to be covered

• Overview and Notational Convention
• Introduction to the Intel Architecture
• Basic Execution Environment
• Procedure Calls, Interrupts, and

Exceptions
• Data Types and Addressing Modes
• Instruction Set Summary
• Floating-Point Unit
• Programming with Intel MMX Technology
• Programming with the Streaming SIMD

Extensions

Notational Conventions
a Bit and Byte Oder

`Smaller address at the bottom of figure
`Address increases toward top
`Bit positions numbered from right to left

a Little-Endian Machine
`the bytes of a word are numbered starting from the least

significant byte

3

4

Conventions
a IA Assembly Language
a Instruction Format

` Label: mnemonic argument1, argument2, argument3
` Label: Identifier (followed by a colon)
` Mnemonic: a reserved name for a class of instruction opcodes which have the same function
` Operands (arguments): The operands argument1, argument2, and argument3 are optional.

There may be from zero to three operands, depending on the opcode. When present, they
take the form of either literals or identifiers for data items. Operand identifiers are either
reserved names of registers or are assumed to be assigned to data items declared in another
part of the program.

` When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

` Example: LOADREG: MOV EAX, SUBTOTAL
` label mnemonic dst src

a Binary and Hexadecimal Numbers
` Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the

character B (for example, 1010B). The “B” designation is only used in situations where
confusion as to the type of number might arise.

` Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

a Segmented Addressing
` Byte addressing
` Address space: Range of memory that can be addressed
` Segmented Addressing: where a program may have many independent address spaces.
` Example: Byte address within a segment

⌧ Segment-register:Byte-address
⌧ DS:FF79H (byte at address FF79H in the segment pointed by the DS register)

5

Conventions
aExceptions

`an event that typically occurs when an instruction causes an
error.

`Example: an attempt to divide by zero generates an exception.
`Some exceptions, such as breakpoints, occur under other

conditions.
`Some types of exceptions may provide error codes. An error

code reports additional information about the error.
`#PF(fault code)

⌧This example refers to a page-fault exception under conditions where an
error code naming a type of fault is reported.

`Under some conditions, exceptions which produce
error codes may not be able to report an accurate
code. In this case, the error code is zero, as shown
below for a general-protection exception.
⌧#GP(0)

6

Intel Architecture - History
a First IA Family member:

8086 (Æ 8088). 1978
`Cf. 4004 Æ 8080 Æ 8085

a 8086
`16-bit registers, external data

bus
`20-bit addressing (Æ 1MB

address space)
`Segmentation (by 16-bit) :

64KB
⌧4 Segmentation registers hold

4*64KB =256KB
⌧Upto 256KB can be addressed

without switching between
Segments

7

IA History -continued
a 80286

`Protected Mode
⌧Segment register contents as selector or pointer Æ discriptor table

`24-bit base address Æ 16MB memory size
`Application protection

a 386
`32-bit registers for operands and addressing(Æ4GB space)
`Lower half of 32 bits is equivalent to 16 bits of earlier

generations [Backward (upward) compatibility with 16-bit
registers]

`Some new instructions was added (like bit manipulation)
`Max 4GB segmentation of physical space
`New Parallel Processing Stages introduced: Bus Interface Unit,

Code Prefetch Unit, Instruction Decode Unit, Execution Unit,
Segment Unit (logical address Æ Linear address), Paging Unit
(Linear address Æ physical address)

8

IA History - Continued

a 486
`More parallel execution capability

⌧Expansion of 386’s Instruction Decode and Execution Units into 5 pipeline
stages – 1 instruction per 1 CPU clock

`L1 cache added
⌧8 KB

`Integration of floating-point math unit on to the same chip
`More pins added to support multiprocessors
`Energy saving and management capability added to 486 SL

Enhanced processors --- for battery operated notebook PC
market
⌧Stop clock and auto halt powerdown features – reduced clock rate to save

power

9

IA History - Continued
a 486

`More parallel execution capability
⌧Expansion of 386’s Instruction Decode

and Execution Units into 5 pipeline
stages – 1 instruction per 1 CPU clock

`L1 cache added
⌧8 KB

`Integration of floating-point math
unit on to the same chip

`More pins added to support
multiprocessors

`Energy saving and management
capability added to 486 SL
Enhanced processors --- for
battery operated notebook PC
market
⌧Stop clock and auto halt powerdown

features – reduced clock rate to save
power

10

Insert – Cache Memory
a CPU Cache Memory

` a cache used by CPU to reduce the average time to access memory.
` a smaller, faster memory which stores copies of the data from the most frequently

used main memory locations. As long as most memory accesses are to cached
memory locations, the average latency of memory accesses will be closer to the
cache latency than to the latency of main memory.

`Multi-level caches generally operate by checking the smallest Level 1
(L1) cache first; if it hits, the processor proceeds at high speed. If the
smaller cache misses, the next larger cache (L2) is checked, and so on,
before external memory is checked.

`As the latency difference between main memory and the fastest cache
has become larger, some processors have begun to utilize as many as
three levels of on-chip cache. For example, in 2003, Itanium 2 began
shipping with a 6 MB unified level 3 (L3) cache on-chip. The IBM Power 4
series has a 256 MB L3 cache off chip, shared among several
processors.

IA History - continued

aPentium
`Second Execution

Pipeline –2
pipelines (u and v)
Æ 2 instructions
per clock

aL1 Cache
`8KB for code
`8KB for data –

MESI protocol for more
efficient write-back mode

a Registers: 32 bits
a Internal Data paths:

128 and 256 bits 11

IA History - continued
aPentium Pro
`“Dynamic Execution” – 3 instructions per CPU

clock
`8-KB L1 cache
`256 KB L2 cache
`36-bit address bus Æ 64 GB Physical Address

12

IA History - continued
aPentium II
`MMX instructions added

⌧MMX is a single instruction, multiple data (SIMD) instruction set
designed by Intel, introduced in 1996

⌧MMX is officially a meaningless initialism trademarked by Intel.
⌧MMX defined eight registers, known as MM0 through MM7

(henceforth referred to as MMn)
⌧Each of the MMn registers holds 64 bits (the mantissa-part of a full

80-bit FPU register). The main usage of the MMX instruction set is
based on the concept of packed data types, which means that
instead of using the whole register for a single 64-bit integer, two
32-bit integers, four 16-bit integers, or eight 8-bit integers may be
processed concurrently.

`16 KB L1 Instruction, 16 KB L1 Data
`256 (512, 1000) KB L2
`Power Management: AutoHALT, Stop-Grant, Sleep,

Deep Sleep 13

IA History - continued
a Pentium III

`Pentium Pro + Pentium II
`70 new instructions

⌧For New SIMD-floating-point unit

a Summary

14

IA History - continued
a P6 Family Processor

`1995
`Most recent processor in IA family
`3-way superscalar, pipelined architecture: 4 units

15

• 8 KB L1 Instruction cache
• 8 KB L1 Data cache
• 256 (512, 1000) KB SRAM L2
Æ 64 bit cache bus
• Dynamic Execution (out-of-

order execution mechanism)
• Deep branch prediction
• Dynamic data flow

analysis
• Speculative execution-

ahead of program counter

IA History - continued
aP6 Micro-

architecture
`Instruction

fetch/decoder
unit

`Instruction
Pool (reorder
buffer)

`Dispatch/Exec
ute Unit

`Retirement
Unit

16

1

EECE416 :Microcomputer Fundamentals and
Design (“Microcomputer & Microprocessor”)

IA 32
Basic Execution Environment

As seen by assembly-language programmers

Dr. Charles Kim
Department of Electrical and Computer Engineering

Howard University

Modes of Operation
a Operating mode determines which instructions and

architectural features are accessible - 3 Operating modes
a Protected mode

`Native State of Processor
`All instructions and architectural features are available – highest

performance and capability
`Recommended mode

a Real-address mode
`Programming environment of Intel 8086
`Processor is in this mode following power-up or reset

a System management mode (SMM)
`Power management and system security
` Enters SMM by SMM interrupt (SMI) or APIC (Advanced Programmable

Interrupt Controller)

2

3

Overview of Basic Execution

a Set of resources for Executing instructions and for
Storing code, data, and state information

a Resources:
`Address space: 36 address lines
`8 General data registers
`6 Segment registers
`Status and control registers

4

Memory Organization
a Physical Memory

`The memory -- the processor addresses on its bus
`Organized as a sequence of 8-bit bytes
`Each byte is assigned a unique address, a physical

address
`Range: 36 address lines Æ 64 GB

a Flat memory model (a single continuous address space) Æ
linear address space
`Code, data, stack are all contained in this address space
`Byte accessible

a Segmented memory model (memory grouped into
independent address spaces, segments)
`Code, data, stacks are contained in separate segments
` Logical address (segment selector and an offset) to address
`Up to 16K segments of different sizes (max 64 GB)
`Why segmentation:

⌧Increase reliability of programs and systems – avoid overwriting
a Real-Address Mode (Intel 8086 model)

5

Memory Management Model

6

General Purpose Data Registers
a Holding the following items (for all):

`Operands for logical and arithmetic
operations

`Operands for address calculations
`Memory pointers

a ESP (Stack pointer)holds the stack
pointer (restricted use)

a ECX (Counter), ESI (Source pointer) ,
EDI (data pointer) for string instructions

a EBP (base pointer to data on the stack in
DS segment)

a EDX (for I/O pointer)
a EAX (accumulator for operands and

results data)
a EBX (Pointer to data in Segment)
a ESP points to the top item on the stack

and the EBP points to the "previous" top
of the stack before the function was
called.

7

Segment registers
a Hold 16-bit segment selectors
a Segment selector: a special pointer that

identifies a segment in memory
a Associated with 3 types of storage:

` Code (instructions are stored): CS + EIP
(offset)

` Data : DS, ES, FS, and GS
` Stack (Procedure Stack is stored): SS

a Segment selector Å by Assembler
directive

a Flat (un-segmented) Memory Model Case:
` Overlapped and starts at 0: Code Seg and

Data Seg and Stack Seg
a Segmented Memory Model Case:

` Loaded with different segments, pointing
different segments

` Program can access 6 different segments
` To access a segment not pointed by the

Segment registers? Load a segment
selector to a segment register first.

EFLAG Register
a 32-bit register

` Initial state: 00000002H
` Contains a group of status flags, a control flag, and a group of system

flags

Status Flags

Control Flag (DF)

aDF (Direction Flag)
`The direction flag controls the string instructions

(MOVS, CMPS, SCAS, LODS, and STOS).
`DF=1 Æ string instructions to auto-decrement (that

is, to process strings from high addresses to low
addresses).

`DF=0 Æ string instructions to auto-increment
(process strings from low addresses to high
addresses).

`STD Æ Set DF flag
`CLD Æ Clear DF flag

System Flags

	uC04_F11_IA32_BasicArchitecture.pdf
	LEC04_F11_IA32_BasicExecutionEnvironment

