Department of Electrical and Computer Engineering Howard University

Hybrid Class of EECE202 Network Analysis I & EECE208 Intro to Electrical Eng Lab

A . Information for students

1. What is a "hybrid" course?

Combination of Lecture class and Lab class into a single course

2. Why "hybrid" course?

Bridging the gap between concept/theory and real world application Instant verification of the concept by experimentation Active engagement in student-to-student and student-to-instructor

3. What is the goal of the "hybrid" course?

Learning enhancement by "learning by practice" Learn more and keep longer Discovery of knowledge

4. How do we implement the "hybrid" course?

Lecture Mobile Studio: HP tablet PC + Instrumentation Card Breadboard (your own)

5. How is the weekly schedule of the "hybrid" class?

A total of 6 hours will be used for the "hybrid" class. No distinction between 202 and 208 hours.

Instruction between 202 and 208 nou

M (12:10 - 3 PM): 3 hrs T (12:40 - 2 PM): 1 1/2 hrs

R (12:40 - 2 PM): 1 1/2 hrs

* Occasionally, T or R will be used as a recitation or problem solving session.

** A few early classes will be dedicated to get familiar with traditional lab equipment

6. How do I get grade from the "hybrid" class?

The single "hybrid" class still has two classes; therefore, the grade earned from the hybrid class becomes the same grade for both EECE202 and $EECE208^{1}$.

7. What happens if I register only one of the courses?

Two courses are co-requisite; you must register both courses. .

8. Who is the teacher of the hybrid course?

It is done by team-teaching Dr. Charles Kim (202-806-4821, ckim@howard.edu) Dr. Mohamed Chouikha (202-806-6585, mchouikha@howard.edu)

¹ This policy is still pending with possible minor change

Hybrid Class of EECE202 Network Analysis I & EECE208 Intro to Electrical Eng Lab

B. Hybrid Course Information

0. Are you in the correct class?

This course's pre-requisite is Physics I (and Lab) This course's co-requisite is Differential Equations.

1. Objective of the hybrid course

Understanding of the basic circuit theory and its application

2. Content of the hybrid course

DC sources - independent and dependent Resistors (R) and equivalent resistance Circuit simplification - series and parallel, Thevenin/Norton equivalent circuit Circuit analysis methods - voltage divider, current divider, node voltage, mesh current Inductors (L) and Capacitors (C) Transient behavior of R-L-C circuits Operational Amplifiers Circuit Simulation tool - PSpice

3. Assignments, Exams, and Project

Several homework assignments A few exams Project

4. Course Web-Site

Syllabus, class notes, tutorials, etc.² Textbook:

> "Electric Circuits" by James Nilsson and Susan Riedel Prentice-Hall (or Addison-Wesley for 4th and 5th Editions) Edition x^3 . ($\forall x : x \ge 5$)

5. Classroom (new)

LKD 3121

6. Suggestions for success in the class

Do not miss class Come early Do not leave class with question unasked Engineering course also has an art component--- > Solve end-of-chapter problems Use all your channels and mediums to answer your questions - visit, email, phone, etc Read the textbook, at least occasionally Submit your assignments on time

² Until revision and update, you can browse around http://www.hirstbrook.com/classnotes.html

³ My recent check showed me that even 4th edition is almost identical. So the equation goes like $x \ge 4$.