6. Micro Grid and Micro-Power System Concept

Microgrid

- Microgrids incorporate distributed energy generation, both from renewable as well as fossil fuel power sources, into the larger electrical distribution system.
- Microgrids can be either operated in conjunction with, or “islanded” from, the utility power grid.
- Microgrids are utilized in a variety of settings including commercial applications, community/utility deployments, institutional power systems, military installations, and off-grid microgrids that provide electricity to remote villages and other sites.
- Pike Research reported that more than 160 microgrid projects are currently active around the world, with power generation capacity totaling more than 1.2 gigawatts (GW).
- Up to 2009: majority of microgrids have been pilot projects and/or research-related experiments.
- 2010 - shift to commercial-scale microgrid projects
- 2011: IEEE islanding standards in 2011
Micro Grid Overview

- Interconnected network of distributed energy systems (loads/resources) that can function connected to or separate from grid:
 - During a grid disturbance, a micro grid isolates itself from the utility seamlessly with no disruption to loads within;
 - automatically resynchronizes and reconnects to grid seamlessly when grid conditions return to normal

- Existing projects
 - CERTS Micro grid Test Bed (AEP) - Testing started 11/06
 - GE demo -Advanced controls, energy management and protection technologies
 - US Army CERL/Sandia Labs Energy Surety Project -Controls, optimization of resources and storage
 - More than 160 Microgrid project are currently Active around the world [as of May 2011]

DOE Microgrid Perspective - 2012

- **Definition** (by Microgrid Exchange Group): “A microgrid is a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode.”

- **Microgrid Configuration**
 - Consumer Microgrid—single consumer with demand resources on consumer side of the point of delivery, (e.g. sports stadium)
 - Community Microgrid—multiple consumers with demand resources on consumer side of the point of delivery, local objectives, consumer owned, (e.g., campus, etc.)
 - Utility Microgrid—supply resources on utility side with consumer interactions, utility objectives
Micro Grid Control & Optimization

- Micro grid Control System **automates and optimizes** the use of distributed energy resources (DER) such as conventional generations, renewable-based generations, energy storages, and dispatchable loads.
- **Optimization** of a microgrid involves coordinating the timing and selection of dispatchable DER with the non-dispatchable ones (such as renewable resources) to minimize **energy cost** or **emission**.

Micro Grid Optimal Dispatch

- Micro grid controller determines a set of dispatch decisions by applying the **cost objective** against the **constraints**, and the **dynamic state** of micro grid such as
 - the current output power levels of **generators**,
 - the input/output power levels of **storage**
 - the **state-of-charge** of each energy storage unit, etc.
- The decisions are translated into **specific DER actions** such as **on/off control** and power reference set-points.
- The optimization process is **performed periodically** to follow the evolving dynamics of the micro grid.
Micro Grid at Palmdale

- Palmdale Water District (Palmdale) in California
- 1000kW Diesel back-up genset; Pump station loads: 760 kW
- Use of ultracapacitor energy storage module; 450 kW
- Distributed energy resources: 950 kilowatt wind turbine, a 200 kilowatt natural gas generator, and a 250 kilowatt water turbine generator.

Micro Grid in UAE

- Abu Dhabi (UAE) Project
- Powered by renewable electricity --- island based renewal microgrid
- Plan: Control system, energy storage, DC distribution, Solar PV, Wind, and Biofuel.
- Cooperation with South Korea's Research Institute for Industrial Science and Technology, and is being supported by around $1 million in funding from steel producer POSCO.

UAE-GGGI launches a Public-Private Partnership Project to Design 100% Renewable Energy Micro-grid

Abu Dhabi-UAE: 16 September, 2012
Micro Grid in UAE with GGGI

Elements for UAE Microgrid System

<table>
<thead>
<tr>
<th>Elements</th>
<th>Functions & Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Sources</td>
<td></td>
</tr>
<tr>
<td>PV power</td>
<td>- Zero emission power source</td>
</tr>
<tr>
<td></td>
<td>- Consideration of climate and geometric condition</td>
</tr>
<tr>
<td>Wind power</td>
<td>- Small wind power</td>
</tr>
<tr>
<td>ESS</td>
<td>- Night time energy source (Energy storage and grid stabilizing)</td>
</tr>
<tr>
<td>Micro turbine</td>
<td>- Emergency dispatch power source (using bio diesel from Algae farm)</td>
</tr>
<tr>
<td>Smart Meter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Real-time remote metering</td>
</tr>
<tr>
<td></td>
<td>- Bi-directional information exchange and consumer load control</td>
</tr>
<tr>
<td>EV Charging Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zero emission vehicle and Boat</td>
</tr>
<tr>
<td>Energy Management System (EMS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Macro grid connection control</td>
</tr>
<tr>
<td></td>
<td>- Consumer demand monitoring and demand response control</td>
</tr>
<tr>
<td></td>
<td>- Weather information based demand prediction</td>
</tr>
<tr>
<td></td>
<td>- Grid operation optimization and stabilization</td>
</tr>
<tr>
<td></td>
<td>- Battery storage control (charge and discharge control)</td>
</tr>
<tr>
<td></td>
<td>- Desalination plant operation using surplus energy</td>
</tr>
<tr>
<td>Network & Security</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Full connectivity for each unit (information & control network)</td>
</tr>
<tr>
<td></td>
<td>- Economic and expandable network configuration</td>
</tr>
<tr>
<td>Desalination plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To use surplus energy efficiently</td>
</tr>
<tr>
<td></td>
<td>- Water storage</td>
</tr>
<tr>
<td>Bio energy plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Algae farm and Bio-fuel production</td>
</tr>
</tbody>
</table>

Micro Grid Project – SDG&E

MicroGrid Selected Site: Borrego Substation

Key Characteristics:

Strengths:
- No residences nearby, plenty of land
- More Existing Solar Customers
- Large Reliability Improvements Possible
- Possibility of ‘Islanding’ Entire Community
- Great learning environment
- Extendable to service territory

Challenges:
- Remote Area
- Challenging Communications Environment
- New Fencing Required
- Requires Accelerating schedule for Condition Based Maintenance and AMI Deployment

Borrego offers SDG&E an opportunity to be the leader in the Micro Grid area, with the possibility of being able to island an entire substation with peak load of over 10 MW.
Target: >15% peak load reduction

Two (2) 1.8 MW Diesel Generators (200 hours per year)

AES System Battery: 1.0 MW power output and 6.0 MW-Hr of energy

25-50 kW 1-3 Hour storage Battery

100-300 kW 3 hour storage battery

Military Micro Grid

- Fort Carson Base in Colorado
- Electric Car batteries as energy storage
- Solar power as alternative energy source
- The base has one of the Army’s largest solar arrays on base proving more power than the base’s needs.
Micro grid & Smart Grid

- As a source/load to the distribution system

Future Smart Grid with Micro Grids

- Plug-and-play integration of smart micro-grids
- Communication, data, and power exchange
A new way-out (from the Smart Grid bubble?)

- Large utilities’ position on renewables
 - Obligation
 - Security obstacles
 - Regulatory obstacles

- Smaller System
 - Dual fuel option: liquid fuels from oil and high renewable penetration
Island Micro Grid

Why islands?
- Renewables compete with oil, not gas
- Power being used at point source without regulation
- Wind (Solar)-Diesel: for large communities of facilities with large loads
- Don’t need incentives or subsidies
- Don’t need transmission access
- High renewable contributions

Challenges
- Patience with new technology
- Logistics
- Cultural issues

Future on Islands

- Islanders: high and variable energy costs; Excellent access to renewables
- LCOE: Levelized Cost of Energy

Islands can lead the way

Michael Liebreich, Bloomberg New Energy Finance
PV Diesel Cost -- Projection

Where are the prices going?

Island Interconnection

- Deliver lower cost power from one island to another
- Transmit renewable generated energy to an island that otherwise does not have access to less expensive renewable power
- Increased reliability, better power quality, better hurricane resilience
Island Interconnection - Example

- Caribbean Grid (World Bank)
- Puerto Rico – USVI – BVI (DOE)
- Nevis – USVI – Puerto Rico (U.S. Dept. of State / OAS)
- Puerto Rico – Dominican Republic (World Bank)

Hawaii Example

Regional-focused energy strategies

- Transportation: Jet fuel
- Transportation: Gasoline & Ethanol
- Transportation: Diesel & Biodiesel
- Electricity: Diesel & Biodiesel
- Electricity: Fuel Oil & Naphtha
Hawaii Projects

US-Japan Maui Smart Grid
- Integration of variable renewable energy resources on islanded grid with widespread adoption of electric vehicles
- International cooperation – public/private partnership
- 200 EVs with home charging + public fast charger network

Hawaii – Korea Smart Grid Proposal
- Collaboration with hotel industry on Oahu
- Focus on energy use in large commercial buildings with integrated renewable energy and electric vehicle charging

Virgin Islands under study

Resources (Wind Speed)
Ieodo Island

December 8, 2013

South Korea Announces Expansion of Its Air Defense Zone

SEoul, South Korea - Defying both China and Japan, South Korea announced on Sunday that it was expanding its air patrol zone for the first time in 62 years to include airspace over the East China Sea that is also claimed by Beijing and Tokyo.
Micro Grid (“Micropower System”) Planning & Design

1. Identify Site:
 - Clarify the goals of the microgrid:
 - What are the critical facilities that must be included in the microgrid?
 - What are the thresholds and how long should a utility disturbance persist before transitioning to islanded mode?
 - What is the maximum amount of time the microgrid must operate?
 - Factors impacting microgrid Capabilities:
 - Site mission
 - Geographic relationship of facilities and site electrical distribution system layout/characteristics
 - Existing standby generation capacity and controls
 - Availability and feasibility of renewable resources
 - Building management & control systems/ load control schemes
 - Utility standards and response to microgrid proposal

Load Profile

2. Load Study
 - Load Profiles – annual and daily peak and seasonal behavior
 - Operational equipment data
 - Critical and Sensitive load to power quality
 - Flexibility of load to adjust and match available generation
DG Resources

3. DR and Energy Storage Study
- PV, Wind, etc for renewable sources
- Coverage required for microgrid footprint
- Existing standby generation characteristics
- Proposed/funded generation projects
- Fuel inventory and duration requirements
- Dispatchability to intermittency ratio
- Distributed storage considerations – location, technology, capacity, & duration

Meeting the Load

4. Generation-Load Match Study
- Can existing/projected generation capacity meet the proposed peak load and daily operating requirements?
- Can dispatchable resources handle transient disturbances on the system while maintaining satisfactory voltage and frequency?
- Can existing dispatchable generation compensate for the variability of renewable resources?
5. Develop Control Strategy

- Appropriate control strategies for self regulation - load and generation dispatch
- Include both grid–connected and islanded conditions
- Control of utility interface (i.e., static transfer switch) to handle seamless separation and reconnection to utility power
- Utility requirements (monitoring and/or control of interface)
- Local /central control schemes to monitor & control DR and loads
- Interface with building energy management system(s)
- Integration with existing legacy communication systems/software
- Address security concerns –cyber & physical
- Integration with existing protection schemes

6. Equipment Study

- Engineering analysis
- Modeling and Simulation under various scenarios
- Now, HOMER finally comes in here !!!