4. Renewable Energy Sources

Part B1: Solar Electricity

Charles Kim, "Lecture Note on Analysis and Practice for Renewable Energy Micro Grid Configuration," 2013. www.mwftr.com

Brief on Solar Energy

- Solar Energy: Radiant energy from the sun that travels to Earth in electromagnetic waves of rays.
- Solar energy is produced in the sun's core when hydrogen atoms combine ["fusion" process] to produce helium. During the fusion, radiant energy is emitted.

 $4 {}^{1}\text{H} + 2 \text{ e} \longrightarrow {}^{4}\text{He} + 2 \text{ neutrinos} + 6 \text{ photons}$

1

- **We** capture solar energy with solar collectors [Photovoltaic Cells] that turn radiant energy into electricity
- **#** Clean and renewable energy source
- **#** Solar Radiation Information Critical
- Intermittent source

Solar Energy Resources

Http://eosweb.larc.nansa.org/cgibin/sse/sse.cgi

NASA's Surface Meteorology and Solar Energy

Solar Declination

- Fixed Earth and Sun Moving Up and Down View
- Solar Declination: Angle between the sun and the equator
- **Solar declination:** "angle between the sun's rays and the earth's equatorial plane, the latitude at which the sun is directly overhead at midday. Declination values are positive when the sun is north of the equator (March 21 to September 23) and negative when the sun is south of the equator. Maximum and minimum values are +0.409 radians (+23.45 degrees) and -0.409 radians (-23.45 degrees)."

A good rule of thumb of solar panel

- Face it south
- Tilt it up at an angle equal to the local latitude

Solar Declination Angle

- Angle between the sun's rays and the earth's equatorial plane
- **#** The latitude at which the sun is directly overhead at midday.
- Declination values are positive when the sun is north of the equator (March 21 to September 23) and negative when the sun is south of the equator. Maximum and minimum values are +0.409 radians (+23.45 degrees) and -0.409 radians (-23.45 degrees)."

	_				
		$\delta = 23.45$	$5^\circ \sin\left[\frac{360}{365}\right]$	(n-81)]	
		$\delta = \sin^{-1}$	{sin(23.4	5°) sin $\left[\frac{360}{365}\right]$	(n-81)
€	Ē	XCEL			
		А	В	С	
	1	n	δ	δ	
	2	1	-23.0084804	-22.98290396	
	3	31	-17.7755991	-17.55717467	
	4	61	-7.91105916	-7.715532161	
	5	91	4.01480801	3.906791706	
	~	101	44.0045650		

151 21.8933548

211 18.4399363

241 8.88756089

23.1875515

271 -2.98058167 -2.899381994

=ASIN(SIN(23.45*3.14/180)*SIN((360/365)*(A2-81)*3.14/180))*180/3.14

181

=23.45*(SIN((360/365)*(A2-81)*3.14/180))

7

8

9

10

11

21.81023387

23.17215181

18.23595278

8.674823443

MathCAD

Beam on Earth Surface [Example Calculation]

³⁸ Question: Find the direct beam solar radiation normal to the sun's rays at solar noon on a clear day in Atlanta (latitude 33.7 degrees) on May 21. (solar declination table)

Excel Solution

X	- 17 · (*		-		-		Solution p69 -	IB calculatio	on.xlsx - Micr	osoft Excel	_	Solut IB cal	tion p69 culation.xlsx
Fi	le Hom	ne Insert	Page Layo	out Form	ulas Data	Review	View A	crobat					
ľ	<u>م</u>	Arial	* 11 ·	A A =	= = *	»- =·	Vrap Text	General		•			
Pas *	te 🧹 🛛	BIU	- 🖽 - 🗳	•• <u>A</u> •			/lerge & Cente	r* \$*%	6 ° .00 4	Condition Formattin	onal Format ng ∗as Table ∙	Cell In Styles *	sert Delete Fc
Clipt	oard 🕞		Font	Es.		Alignment		Ta N	umber	Fai	Styles		Cells
	12		▼ (°	<i>f</i> _x =0.17	4+0.035*SIN	(E2*G2*3.	14/180)						
	А	В	С	D	E	F	G	Н		J	K	L	М
1	n	Lat	delta	beta	360/365	n-275	n-100	A	k	m	IB		
2	141	33.7	20.1	76.4	0.986301	-134	41	1104.35	0.196693	1.029016	901.9977	21-May	Atlanta
3	22	33.7	-20.1	36.2	0.986301	-253	-78	1230.208	0.139912	1.693919	970.6241	22-Jan	Atlanta
4	22	37.5	-20.1	32.4	0.986301	-253	-78	1230.208	0.139912	1.867118	947.3859	22-Jan	Korea
5													
6													
7													
0													

	H2	•	(1	£ =1160+	75*SIN(E2*F	2*3.14/18	0)						
×	Solution p6	9 IB calcul	ation.xlsx										
	A	В	С	D	E	F	G	Н	1	J	K	L	М
1	n	Lat	delta	beta	360/365	n-275	n-100	A	k	m	IB		
2	141	33.7	20.1	76.4	0.986301	-134	41	1104.35	0.196693	1.029016	901.9977	21-May	Atlanta
3	22	33.7	-20.1	36.2	0.986301	-253	-78	1230.208	0.139912	1.693919	970.6241	22-Jan	Atlanta
4	22	37.5	-20.1	32.4	0.986301	-253	-78	1230.208	0.139912	1.867118	947.3859	📑 22-Jan	Korea
-												Constant of the second s	

15

Solution by MathCad

or quarter⁽¹¹⁾ is an angular measurement in a spherical coordinate system. The

Diffuse Radiation on Collector

∺ Sky diffuse factor (C)

$$C = 0.095 + 0.04 \sin\left[\frac{360}{365}(n - 100)\right]$$

- n: day number
- Diffuse insolation on a Horizontal surface is proportional to the direct radiation

$$I_{DH} = C I_B$$

January July n = 182n = 1February August n = 213n = 32March n = 60September n = 244April n = 91October n = 274n = 305November n = 121May June n = 152December n = 335

Biffuse Radiation on collector

Reflected Radiation on Collector

Combination of all three: Radiation striking a collector on a clear day

 $\cos\theta = \cos\beta\cos(\phi_S - \phi_C)\sin\Sigma + \sin\beta\cos\Sigma$

$$I_{C} = I_{BC} + I_{DC} + I_{RC}$$

$$I_{C} = Ae^{-km} \left[\cos\beta \cos(\phi_{S} - \phi_{C}) \sin\Sigma + \sin\beta \cos\Sigma + C \left(\frac{1 + \cos\Sigma}{2} \right) + \rho (\sin\beta + C) \left(\frac{1 - \cos\Sigma}{2} \right) \right]$$

$$(23)$$

Average Monthly Insolation

- Estimate of average insolation that strikes a tilted collector under real conditions at a particular site
- $||_{C} = |_{BC} + |_{DC} + |_{RC}$ (direct + Diffuse + reflection) on collector surface
- Working on horizontal insolation first (since primary measurement data is on horizontal insolation I_H)

```
|H| = |DH| + |BH| (Horizontal Insolation = Horizontal Diffuse + Horizontal Beam)
```

- | $H_{DC} \leftarrow H_{DH} \& H_{RC} \leftarrow H_{H}$ (already discussed)
- H Question is how to get I_{BC} from I_H

Decomposition of Total Horizontal Insolation (I_H)

Clearness index (K_T): Ratio of average horizontal insolation at a site (I_H) to the extraterrestrial insolation on a horizontal surface above the site and just outside the atmosphere (I_o)

$$K_T = \frac{I_H}{\overline{I}_0}$$

Average value of I_o: averaging the product of normal radiation and the SIN of the solar hour angle from sunrise and sunset:

$$\overline{I}_0 = \left(\frac{24}{\pi}\right) \operatorname{SC}\left[1 + 0.034 \cos\left(\frac{360n}{365}\right)\right] \left(\cos L \cos \delta \sin H_{SR} + H_{SR} \sin L \sin \delta\right)$$

Correlation between Clearness Index and Diffuse Radiation:

$$\frac{I_{DH}}{\overline{I}_H} = 1.390 - 4.027K_T + 5.531K_T^2 - 3.108K_T^3$$

Biffuse and Reflected Radiation on a tilted collector surface

$$\overline{I}_{DC} = \overline{I}_{DH} \left(\frac{1 + \cos \Sigma}{2} \right) \qquad \overline{I}_{RC} = \rho \overline{I}_{H} \left(\frac{1 - \cos \Sigma}{2} \right)$$

 $H_{SR} = \cos^{-1}(-\tan L \tan \delta)$

SUNRISE HOUR ANGLE - The sunrise hour angle is the hour angle, expressed in degrees, when the sun's center reaches the horizon.

25

Conversion to Beam Radiation on Collector

Herein a the transformation on a horizontal surface (I_{BH}) can be found by subtracting the diffuse portion (I_{DH}) from the total (I_H):

$$\overline{I}_{H} = \overline{I}_{DH} + \overline{I}_{BH} \longrightarrow \overline{I}_{BH} = \overline{I}_{H} - \overline{I}_{DH}$$

***** Conversion of horizontal beam radiation (I_{BH}) to the beam radiation on collector (I_{BC}) :

$$I_{BH} = I_B \sin \beta$$

$$I_{BC} = I_B \cos \theta$$

$$I_{BC} = I_{BH} \left(\frac{\cos \theta}{\sin \beta} \right) = I_{BH} R_B$$

$$\theta \text{ is the incidence angle between the collector and beam}$$

$$\beta \text{ is the sun's altitude angle}$$

$$R_B \text{ is beam tilt factor}$$

\mathbb{H} Average value of Beam Tilt Factor (R_B):

Average value of Beam Tilt Factor (R_B)

For South-Facing Collectors:

 $\overline{R}_{B} = \frac{\cos(L - \Sigma)\cos\delta\sin H_{SRC} + H_{SRC}\sin(L - \Sigma)\sin\delta}{\cos L\cos\delta\sin H_{SR} + H_{SR}\sin L\sin\delta}$ $H_{SR} = \cos^{-1}(-\tan L\tan\delta) \quad \text{sunrise hour angle (in radians)}$ $H_{SRC} = \min\{\cos^{-1}(-\tan L\tan\delta), \cos^{-1}[-\tan(L - \Sigma)\tan\delta]\}$ sunrise hour angle for the collector L is the latitude $\Sigma \text{ is the collector tilt angle,}$ $\delta \text{ is the solar declination}$

Final Equation for Insolation striking a collector

$$\overline{I}_{C} = \overline{I}_{H} \left(1 - \frac{\overline{I}_{DH}}{\overline{I}_{H}} \right) \cdot \overline{R}_{B} + \overline{I}_{DH} \left(\frac{1 + \cos \Sigma}{2} \right) + \rho \overline{I}_{H} \left(\frac{1 - \cos \Sigma}{2} \right)$$

Solution Approach

Solution - Details

29

July 16 (n = 197): $\delta = 23.45 \sin \left[\frac{360}{365} (n - 81) \right] = 23.45 \sin \left[\frac{360}{365} (197 - 81) \right]$ $= 21.35^{\circ}$ $H_{SR} = \cos^{-1} (-\tan L \tan \delta)$ $= \cos^{-1} (-\tan 37.73^{\circ} \tan 21.35^{\circ}) = 107.6^{\circ} = 1.878 \text{ radians}$ $\overline{I}_{0} = \left(\frac{24}{\pi} \right) \text{SC} \left[1 + 0.034 \cos \left(\frac{360n}{365} \right) \right] (\cos L \cos \delta \sin H_{SR} + H_{SR} \sin L \sin \delta)$ $= \left(\frac{24}{\pi} \right) 1.37 \left[1 + 0.034 \cos \left(\frac{360 \cdot 197}{365} \right)^{\circ} \right] (\cos 37.73 \cos 21.35^{\circ} \sin 107.6^{\circ} + 1.878 \sin 37.73^{\circ} \sin 21.35^{\circ})$ $= 11.34 \text{ kWh/m}^{2} \text{-day}$ $K_{T} = \frac{\overline{I}_{H}}{\overline{I}_{0}} = \frac{7.32 \text{ kWh/m}^{2} \cdot \text{day}}{11.34 \text{ kWh/m}^{2} \cdot \text{day}} = 0.645$ $\frac{\overline{I}_{DH}}{\overline{I}_{H}} = 1.390 - 4.027 K_{T} + 5.531 K_{T}^{2} - 3.108 K_{T}^{3}$ $= 1.390 - 4.027 (0.645) + 5.531 (0.645)^{2} - 3.108 (0.645)^{3} = 0.258$

Solution- Details (Continued)

$$\overline{I}_{DH} = 0.258 \cdot 7.32 = 1.89 \text{ kWh/m}^2 \text{-day}$$

$$\overline{I}_{DC} = \overline{I}_{DH} \left(\frac{1+\cos \Sigma}{2}\right) = 1.89 \left(\frac{1+\cos 30^\circ}{2}\right) = 1.76 \text{ kWh/m}^2 \text{-day}$$

$$\overline{I}_{RC} = \rho \ \overline{I}_H \left(\frac{1-\cos \Sigma}{2}\right) = 0.2 \cdot 7.32 \left(\frac{1-\cos 30^\circ}{2}\right) = 0.10 \text{ kWh/m}^2 \text{-day}$$

$$\overline{I}_{BH} = \overline{I}_H - \overline{I}_{DH} = 7.32 - 1.89 = 5.43 \text{ kWh/m}^2 \text{-day}$$

$$H_{SRC} = \min\{\cos^{-1}(-\tan L \tan \delta), \cos^{-1}[-\tan(L-\Sigma)\tan \delta]\}$$

$$= \min\{\cos^{-1}(-\tan 37.73^\circ \tan 21.35^\circ), \cos^{-1}[-\tan(37.73-30)^\circ \tan 21.35^\circ]\}$$

$$= \min\{107.6^\circ, 93.0^\circ\} = 93.0^\circ = 1.624 \text{ radians}$$

$$\overline{R}_B = \frac{\cos(L-\Sigma)\cos \delta \sin H_{SRC} + H_{SRC}\sin(L-\Sigma)\sin \delta}{\cos L \cos \delta \sin H_{SR} + H_{SR}}\sin L \sin \delta}$$

$$= \frac{\cos(37.73 - 30)^\circ \cos 21.35^\circ \sin 93^\circ + 1.624 \sin(37.73 - 30)^\circ \sin 21.35^\circ}{\cos 37.73^\circ \cos 21.35^\circ \sin 107.6^\circ + 1.878 \sin 37.73^\circ \sin 21.35^\circ}$$

$$= 0.893$$

$$\overline{I}_{BC} = \overline{I}_{BH}\overline{R}_B = 5.43 \cdot 0.893 = 4.85 \text{ kWh/m}^2 \text{-day}$$

$$\overline{I}_C = \overline{I}_{BC} + \overline{I}_{DC} + \overline{I}_{RC} = 4.85 + 1.76 + 0.10 = 6.7 \text{ kWh/m}^2 \text{-day}$$
31

	Spreadsheet															X								
	12 🔻 🌗 🛣 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹																							
	B82 Insolation on Tilted Collector.xlsx																							
	A	В	С	D	Ε	F	G	Н		J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х
1		n	SC	IH	Σ	L	δ	ρ	HSR	lo	KT	idh/ih	IDH	IDC	IRC	IBH	HSRC1	HSRC2	HSRC	RBn	RBd	RB	IBC	IC
2	Oakland	197	1.37	7.32	30	37.73	21.4	0.2	1.878	11.35	0.645	0.2596	1.8999	1.773	0.098	5.42	1.8779	1.6239	1.624	1.001	1.12	0.89	4.842	6.71292
3		22	1.37	2.3	30	37.73	-20.1	0.2	1.284	4.784	0.481	0.387	0.89	0.83	0.031	1.41	1.2841	1.5212	1.284	0.833	0.44	1.88	2.653	3.5145
4	Seoul	197	1.37	7.32	30	37.5	21.4	0.2	1.875	11.35	0.645	0.2596	1.8999	1.773	0.098	5.42	1.8753	1.6223	1.622	0.999	1.12	0.89	4.833	6.70394
5		22	1.37	2.3	30	37.5	-20.1	0.2	1 297	1 0 2 3	0 477	0 3903	0.8978	0.838	0.031	1.402	1,2865	1.5227	1,287	0.836	0.45	1.87	2,626	3.49448
	_			210		0110	-2011	0.2	1.201	4.023	0.411	0.0000	010010	01000	01001	11102	112000	HOLLI	TILOT	01000	0110	1.01	LIVED	
6				210	50	0110	-2011	0.2	1.201	4.023	0.411	0.0000	0.0010	0.000	01001		112000	HOLLI	11201	0.000	0.40	1.01	LIVEO	
6 7				2.10		0110	-2011	0.2	1.201	4.023	0.411	0.0000		0.000			12000	HOLLI	1201	0.000	0.40	1.07	21020	
6 7 8							-2011	0.2	1.207	4.023		0.0000						HOLLI			0.40			

ante		U 18		1.911		0.00			1942 1				1		and et			347				Sen.			E UTITI
		S2		v (0		fx	=MIN(Q2,R	2)																
6	T f	acolation on	a tiltad	collecto	e vlev																				
		isolation on	a unceu	conecto	L'YISY	_	-	-																	
	4	A	B	C	D	Ε	F	G	Η	1	J	K	L	М	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х
	1		n	SC	IH	Σ	L	δ	ρ	HSR	lo	KT	IDH/IH	IDH	IDC	IRC	IBH	HSRC1	HSRC2	HSRC	RBn	RBd	RB	IBC	IC
	2	Oakland	197	1.37	7.32	30	37.73	21.4	0.2	1.878	11.35	0.645	0.2596	1.8999	1.773	0.098	5.42	1.8779	1.6239	1.624	1.001	1.12	0.89	4.842	6.71292
	3		22	1.37	2.3	30	37.73	-20.1	0.2	1.284	4.784	0.481	0.387	0.89	0.83	0.031	1.41	1.2841	1.5212	1.284	0.833	0.44	1.88	2.653	3.5145
	4	Seoul	197	1.37	7.32	30	37.5	21.4	0.2	1.875	11.35	0.645	0.2596	1.8999	1.773	0.098	5.42	1.8753	1.6223	1.622	0.999	1.12	0.89	4.833	6.70394
	5		22	1.37	2.3	30	37.5	-20.1	0.2	1.287	4.823	0.477	0.3903	0.8978	0.838	0.031	1.402	1.2865	1.5227	1.287	0.836	0.45	1.87	2.626	3.49448
	6		8	(<u>}</u>	°	s						a			-				\$				
	7		3	¢		6	í	с — 8 			· · · · · ·			a@			· · · · · · · · · · · · · · · · · · ·				\$ Q				
	8			6		6	С	· · · · · ·			÷			s0			· · · · · · · · · · · · · · · · · · ·				Q				
	0		1			2			0			1						1				I	i		32

MathCad Solution

Insolation per day.xmcd Charles Kim 2013

Q. Estimate the insolation on a south-facing collector at a tilt angle of 30 degress in Oakland, CA (latitude 37.73 degrees N). Assume that (1) Avrage horizontal Insolation (IH) in July is 7.32 kWh.m^2-day, and (2) ground reflectivity os 0.2

Ma	thCad
$\delta(n) = 21.3537$	$H_{SR} = \cos^{-1}(-\tan L \tan \delta)$
2. Sunrise Hour Angle(HSR)	
$HSR := acos(-tan(L \times deg) \times tan(\delta(n) \times deg)) = 1.8781$	radians Solar Constant (SC)
3. Extraterrestrial Insolation (Io) wit	h SC=1.37 kW/m^2 SC := 1.37 kW / m^2
$\overline{I}_{0} = \left(\frac{24}{\pi}\right) \operatorname{SC}\left[1 + 0.034 \cos\left(\frac{360}{36}\right)\right]$ $\operatorname{Io} := \left(\frac{24}{\pi}\right) \times \operatorname{SC} \times \left(1 + 0.034 \times \cos\left(\frac{360 \times n}{365} \times \operatorname{deg}\right)\right) \times \left(\cos(L \times \operatorname{deg})\right)$ 4. Clearness Index (KT): KT = IH/Io KT := $\frac{\mathrm{IH}}{\mathrm{Io}} = 0.6454$	$\frac{\partial n}{\partial 5} \bigg) \bigg] (\cos L \cos \delta \sin H_{SR} + H_{SR} \sin L \sin \delta)$ eg) × cos(δ (n) × deg) × sin(HSR) + HSR × sin(L × deg) × sin(δ (n) × deg)) = 11.34
5. Horizontal Diffuse Radiation (IDH):	
$\frac{\overline{I}_{DH}}{\overline{I}_H} = 1.390 - 4.027K_T + 3$	$5.531K_T^2 - 3.108K_T^3$
IDH := $(1.390 - 4.027 \times \text{KT} + 5.531 \times \text{KT}^2 - 3.108 \times \text{KT}^3) \times$	IH = 1.8982
 Diffuse Ration on the Collector (IDC) (1+cos(S×deg)) 	$\overline{I}_{DC} = \overline{I}_{DH} \left(\frac{1 + \cos \Sigma}{2} \right)$

MathCad

7. Reflected Radiation on the collector (IRC)

 $IRC := \rho \times IH \times \frac{(1 - \cos(S \times deg))}{2} = 0.0981 \qquad k Wh/m^2 - day$

8. Horizontal Beam Radiation (IBH):

$$\overline{I}_{H} = \overline{I}_{DH} + \overline{I}_{BH} \longrightarrow \overline{I}_{BH} = \overline{I}_{H} -$$

 $\overline{I}_{RC} = \rho \overline{I}_H \left(\frac{1 - \cos \Sigma}{2} \right)$

IBH := IH - IDH = 5.4218 kWh/m^2-day

9. Sunrise Hour Angle on the Collector (HSRC)

 $H_{SR} = \cos^{-1}(-\tan L \tan \delta)$ sunrise hour angle (in radians) $H_{SRC} = \min\{\cos^{-1}(-\tan L \tan \delta), \cos^{-1}[-\tan(L - \Sigma) \tan \delta]\}$ sunrise hour angle for the collector

 $HSRC1 := acos(-tan(L \times deg) \times tan(\delta(n) \times deg)) = 1.8781$

 $HSRC2 := acos(-tan(L \times deg - S \times deg) \times tan(\delta(n) \times deg)) = 1.6239$

HSRC := min(HSRC1,HSRC2) = 1.6239 radians

35

IDH

Calculation is complex, so we need

- Spreadsheet or Computer Analysis
- Pre-computed Data such as Solar Radiation Data Manual for Flat-Place and Concentrating Collectors (NREL, 1994)

Solar Radiation for Flat-Plate Collectors Facing South at a Fixed Tilt (kWh/m²/day), Uncertainty $\pm 9\%$

Tilt (°)		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average Mic/Max	2.4	3.3	4.4	5.6	6.2	6.9	6.7	6.0	5.0	3.8	2.6	2.1	4.6
Latitude -15	Average	3.8	4.6	5.4	6.1	6.2	6.6	6.6	6.3	5.9	5.1/4.2	4.0	3.5	5.4
Eutrude 15 N	Min/Max Average	3.2/4.4 4.4	3.8/5.1 5.1	4.3/6.2 5.6	5.3/6.8 6.0	4.9/7.3 5.9	5.5/7.6 6.1	5.6/7.4 6.1	5.3/7.1 6.1	4.6/6.7 6.0	4.0/5.8	3.4/4.6	2.8/4.1 4.2	4.9/5.7 5.5
Latitude	Min/Max	3.6/5.1	4.2/5.7	4.4/6.5	5.2/6.7	4.6/6.8	5.1/6.9	5.2/6.8	5.1/6.8	4.6/6.8	4.2/6.4	3.9/5.2	3.2/4.8	5.0/5.8
Latitude +15	Average Min/Max	4.8 3.9/5.6	5.3 4.3/5.9	5.6 4.4/6.5	5.6 4.8/6.2	5.2 4.1/6.0	5.2 4.4/5.9	5.3 4.5/5.9	5.5 4.6/6.2	5.8 4.4/6.6	5.7 4.2/6.5	4.8 4.1/5.6	4.5 3.5/5.3	5.3 4.8/5.6
90	Average Min/Max	4.5 3.6/5.4	4.6 3.7/5.2	4.3 3.5/5.0	3.6 3.0/4.0	2.8 2.3/3.1	2.6 2.2/2.8	2.7 2.3/2.9	3.2 2.7/3.6	4.0 3.1/4.6	4.6 3.4/5.3	4.4 3.7/5.1	4.3 3.4/5.2	3.8 3.4/4.1

Average Solar Radiation, Jan/July, Flat, South Facing, Tilted Latitude

Photo-Electricity

In the **photoelectric effect**, electrons are emitted from solids, liquids or gases when they absorb energy from light. Electrons emitted in this manner may be called *photoelectrons*.^{[1][2]}

In 1887, Heinrich Hertz^{[2][3]} discovered that electrodes illuminated with ultraviolet light create electric sparks more easily. In 1905 Albert Einstein published a paper that explained experimental data from the photoelectric effect as being the result of light energy being carried in discrete quantized packets. This discovery led to the quantum revolution. Einstein was awarded the Nobel Prize in 1921 for "his discovery of the law of the photoelectric effect".^[4]

Photovoltaic Material and Electrical Characteristics

- Photovoltaic (PV): a device that is capable of converting the energy contained in photons of light into an electrical voltage or current
- * A photon (short wavelength and high energy) break free electrons from the atoms in the photovoltaic material.
- "The surface of the earth receives 6000 times as much solar energy as our total energy demand"

℅ PV Cell Efficiency

PV History 1829: Edmund Becquerel – voltage development on an metal electrode under illumination 1876: Adams and Day - PV effect on solid – built a cell made of Selenium with 1-2 % efficiency 1904: Albert Einstein – Theoretical explanation of PV effect 1904: Czochralski (Polish Scientist) developed a method to grow perfect crystals of silicon →which later in 1940s and 1950s were adopted to make the first generation of single-crystal silicon PV cells, which continues to dominate the PV industry today Before 1958: Cost prohibitive 1958: Practical PV, used is space for Vanguard I satellite 1970s: Oil shock spurred the commercial PV development 1980s: High efficiency and low cost PV emerged 2002: Worldwide PV production 1992 2002 Data SWVD 1993 ☑ 600MW/year and increasing by 40% per year 15 PV Manufacturing R&D participants with active manufacturing lines in 2002 01994 Worldwide PV production, 2000-2009 Cost 1995 Direct module manufactur cost only (2002 Dollars) Rest of the world Manufacturing 1996 1997 1997 10,000 (MM) d 1999 8,000 production 2000 02001 2002 6.000 0 2003 Module 2005 PV cell 4.000 2006 2008 Average 2 000 2007 0 2000 2001 2002 Source: Photovoltaic Technologies for the 21st Century, December 2010 00 100 200 400 500 600 800 300 70%50 Total PV Manufacturing Capacity (MW/yr)

PV Semiconductor Physics

For Si PV cells, photons with wavelength above 1.11 um don't have the 1.12 eV needed to excite an electron, and this energy is lost. Photons with shorter wavelengths have more than enough energy, but any energy above 1.12 eV is wasted any way – since one photon can excite only one electron.

🔀 AM (Air Mass) Ratio

- AM0: Sun in space (no atmosphere0
- AM1: Sun is directly overhead
- AM1.5: Sun is 42 degrees above the horizon (standard condition)

PV Module Performance Examples

Manufacturer	Kyocera	Sharp	ВР	Uni-Solar	Shell
Model	KC-120-1	NE-Q5E2U	2150S	US-64	ST40
Material	Multicrystal	Polycrystal	Monocrystal	Triple junction a-Si	CIS-thin film
Number of cells n	36	72	72	1 0	42
Rated Power P _{DC,STC} (W)	120	165	150	64	40
Voltage at max power (V)	16.9	34.6	34	16.5	16.6
Current at rated power (A)	7.1	<mark>4.77</mark>	4.45	3.88	2.41
Open-circuit voltage V_{OC} (V)	21.5	43.1	42.8	23.8	23.3
Short-circuit current I_{SC} (A)	7.45	5.46	4.75	4.80	2.68
Length (mm/in.)	1425/56.1	1575/62.05	1587/62.5	1366/53.78	1293/50.9
Width (mm/in.)	652/25.7	826/32.44	790/31.1	741/29.18	329/12.9
Depth (mm/in.)	52/2.0	46/1.81	50/1.97	31.8/1.25	54/2.1
Weight (kg/lb)	11.9/26.3	17/37.5	15.4/34	9.2/20.2	14.8/32.6
Module efficiency	12.9%	12.7%	12.0%	6.3%	9.4%

59

Insolation and Temperature Effect

- # Decrease in insolation, decrease in short-circuit current
- Increase in cell temperature, substantial decrease in open-circuit voltage, and slight decrease in short-circuit current
- ₭ Kyocera 120-W multicrystal-Si module example

Shading Effect and Bypass Diode

- Output of a PV module can be reduced dramatically when even a small portion of it is shaded.
- Even a single cell under shade in a long string of cells can easily cut output power by more than half.
- #External diodes mitigate the impacts of shading

199 v	199) V	199 V	1981 V
199 V	198 V	199 V	198 V
198 . •	198	199	198 V
198 V	199 V	129	198
192	107 w	192	198

63

Physics of Shading

All cells under sun

The same current flows through each cell

H Top cell under shade

- The current source is reduced to zero for the cell
- Now the current from other cells must flow through Rp, which drop the voltage, instead of adding voltage.

Partial Cell under Performance – Blocking Diode

In Parallel Combination of strings of cells: Separate the malfunctioning or shaded string of cells by blocking (or "Isolation") diode at the top of each string

Battery I-V Curve

Ideal: Voltage remains constant no matter how much current is drawn

₭ I-V Curve: Straight up-and-down line

73

Battery I-V Curve

#Real Battery

Real battery has internal resistance: V = V_B + R_i *I

- \square Charging: Applied voltage must be bigger than V_B
- \square Discharging: Output Voltage is less than V_B.

Circuit Operational Principle

- **When the switch is closed, the input voltage** V_i is applied across the inductor, driving current I_L through the inductor. All of the source current goes through the inductor since the diode blocks any flow to the rest of the circuit. During this portion of the cycle, energy is being added to the magnetic field in the inductor as current builds up. If the switch stayed closed, the inductor would eventually act like a short-circuit and the PVs would deliver short-circuit current at zero volts.
- When the switch is opened, current in the inductor continues to flow as the magnetic field begins to collapse (remember that current through an inductor cannot be changed instantaneously—to do so would require infinite power). Inductor current now flows through the capacitor, the load, and the diode. Inductor current charging the capacitor provides a voltage (with a polarity reversal) across the load that will help keep the load powered after the switch closes again.
- If the switch is cycled quickly enough, the current through the inductor doesn't have a chance to drop much while the switch is open before the next jolt of current from the source. With a fast enough switch and a large enough inductor, the circuit can be designed to have nearly constant inductor current. That's our first important insight into how this circuit works: Inductor current is essentially constant.
- If the switch is cycled quickly enough, the voltage across the capacitor doesn't have a chance to drop much while the switch is closed before the next jolt of current from the inductor charges it back up again. Capacitors, recall, can't have their voltage change instantaneously so if the switch is cycling fast enough and the capacitor is sized large enough, the output voltage across the capacitor and load is nearly constant. We now have our second insight into this circuit: Output voltage *Vo* is essentially constant (and opposite in sign to *Vi*).

Input – Output Voltage by Duty Cycle

- The duty cycle of the switch itself controls the relationship between the input and output voltages of the converter.
- ***** The duty cycle D (0 < D < 1) is the fraction of the time that the switch is closed. This variation in the fraction of time the switch is in one state or the other is referred to as *pulse-width modulation* (PWM).

MPPT and PV I-V with Duty Cycle

Estimation of PV Performance

- "1-sun" ("peak sun hour")of insolation is defined as 1 kW/m²
- \mathcal{H}_{ac} =AC power delivered by an array under 1-sun insolation.
- Baily kWh delivered = [rated AC power]*[number of hours of peak sun]

Energy (kWh/day) = Insolation $\left(\frac{\text{kWh/m}^2}{\text{day}}\right) \cdot A \ (\text{m}^2) \cdot \overline{\eta}$ A is the area of the PV array

 $\overline{\eta}$ is the average system efficiency over the day.

DC power from the system 1-sun of insolation,

$$P_{dc}(kW) = \left(\frac{1 \ kW}{m^2}\right) \cdot A \ (m^2) \cdot \eta_{1-sun}$$
$$\underline{\eta_{1-sun}}$$
 is the system efficiency at 1-sun.

$$P_{ac}(kW) = P_{ac}(kW) \cdot [Dc-AC \text{ Conversion Efficiency}]$$

Energy (kWh/day) = $P_{ac}(kW) \cdot (h/day \text{ of "peak sun"})$

REMINDER ---- Peak Sun Map

% <u>http://www.oynot.com</u>
/solar-insolationmap.html

He amount of solar energy in hours ("peak sun" hours) received each day on an optimally tilted surface during the worst month ("design month") of the year.

ENERGY = Rated_Power * Conversion_Efficiency * Peak_Sun_Hour/Day * 365 Day/Year

81

Tom Murphy, "Home Photovoltaic systems for physicists" Physics Today, July 2008.

83

<section-header>

Figure 3. Power center for my dual PV system. Only half the parts are necessary for a more typical single system. Cut off at the bottom edge of the photo are two 12-V, 150-Ah batteries (one for each system), and immediately above them are 110-A class-T fuses. At left are two charge controllers. The black one is a maximum power-point track-ing charge controller, as described in the text; it is certainly overkill for this small system. In the upper right are two 400-W inverters. Below them is an MPPT charge controller not currently used. To the left of the inverters is the monitoring system, capable of measuring two voltages and three currents. In the center is the exposed breaker box, showing three breakers per system, four shunts for current measurement (I use only three

at a time), and for each panel, connected grounded bus bars, metal strips that allow branch connections. Ground wires are green, negative white, and positive red. The green extension cords on the right deliver AC power to appliances in the house. This particular system implementation does not require a ground-fault protection device.

A Home PV

Figure 4. Current-voltage curves for a photovoltaic panel rated at 130 W at 25 °C. The blue curve shows full illumination; the red curve 40% illumination. Typical PV panels, with 36 cells in series, have an open-circuit voltage of around 22 V. Maximum power is typically delivered at around 15–18 V. At lower voltages, the PV current saturates; in full sun the saturation current is called the short-circuit current. The maximum power point (MPP) is indicated for both curves, as is the reduced power achieved by extracting current at typical battery voltages.

85

A Home PV

Figure 5. Sample data for a 130-W solar panel powering an entertain-ment system. Day 300 had a heavy but variable overcast; day 301 was mostly sunny; day 302 was cloudy. The red curve traces the solar power delivered by the panel to the charge controller, and the blue curve traces the load. Note the constant "off" load plus brief intervals of television usage. The black curve is battery voltage, as indicated on the right-hand scale. The battery reached absorption stage on days 301 and 302 and also showed intervals of float stage—indicating a fully charged battery—at the end of both days. The green curve indicates battery charge as a percent of capac-ity. The first day made only a small positive contribution to the battery charge, but the sunny day that followed made up for the deficit. Note that the falling edge of the solar

PV Energy Delivery Calculation

Estimate the annual energy delivered by the 1kW (dc, STC) array in Madison, WI, which south-facing, and has a tilt angle equal to its latitude minus 15°. Assume the dc-to-ac conversion efficiency at 72%.

Insolation Table for Madison

	Madis	son, WI					Latitu	de 43.1	3°N				
Tilt	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Year
Lat - 15	3.0	3.9	4.5	5.1	5.8	6.2	6.2	5.7	4.8	3.8	2.5	2.3	4.5
Lat	3.4	4.3	4.7	5.0	5.5	5.7	5.8	5.5	4.8	4.0	2.8	2.6	4.5
Lat + 15	3.6	4.4	4.6	4.6	4.8	4.9	5.0	5.0	4.6	4.0	2.9	2.8	4.3
90	3.5	4.0	3.7	3.2	2.9	2.8	2.9	3.2	3.4	3.3	2.6	2.7	3.2
1-Axis (Lat)	3.9	5.0	5.8	6.4	7.3	7.8	7.7	7.1	6.0	4.8	3.2	3.0	5.7
Temp. (°C)	-4.0	-1.1	5.3	13.7	20.5	25.7	28.0	26.4	21.9	15.5	6.7	-1.2	13.1

87

Solution

#From 72% Conversion efficiency

 $\square P_{ac} = 1.kW*0.72 = 0.72kW$

#From the Insolation Table, the annual average insolation is 4.5 kWh/m²-day

Same as 4.5 h "peak sun"/day

∺Energy Calculation

Energy = $0.72 \text{ kW} \times 4.5 \text{ h/day} \times 365 \text{ day/yr} = 1183 \text{ kWh/yr}$

MathCad Solution

PV Annual Energy Delivery.xmcd Charles Kim 2013

Q. Estimate the annual energy delivered by the 1 kW (DC) arrary in Madison, WI, which south-facing, and has a tilt angle equal to its latutude minus 15 degrees. Assume the DC-to-AC conversion efficiency at 72%.

Insolation	Table	for	Madison	(i.e.,	Peak-Sun	Hours)

	Madi	son, WI					Latitu	de 43.1	3°N				1
Tilt	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Year
Lat - 15	3.0	3.9	4.5	5.1	5.8	6.2	6.2	5.7	4.8	3.8	2.5	2.3	4.5
Lat	3.4	4.3	4.7	5.0	5.5	5.7	5.8	5.5	4.8	4.0	2.8	2.6	4.5
Lat + 15	3.6	4.4	4.6	4.6	4.8	4.9	5.0	5.0	4.6	4.0	2.9	2.8	4.3
90	3.5	4.0	3.7	3.2	2.9	2.8	2.9	3.2	3.4	3.3	2.6	2.7	3.2
1-Axis (Lat)	3.9	5.0	5.8	6.4	7.3	7.8	7.7	7.1	6.0	4.8	3.2	3.0	5.7
Temp. (°C)	-4.0	-1.1	5.3	13.7	20.5	25.7	28.0	26.4	21.9	15.5	6.7	-1.2	13.1

SOLUTION

Pdc := 1 kw

89

Detailed Monthly Analysis

		Madison,	WI, South	L-15		
	dc	Power		1 kW at ST	2	
	Ter	np. coef.		0.5%/°C		
	Mi	smatch		0.03		
	Dir	t		0.04		
	Inv	erter		0.90		
	NC	CT		47°C		
	Insolation	Avg Max	Cell Temp.	Array de Power	Array ac Power	Energy
Month	(kWh/m ² -day)	Temp. (°C)	(°C)	(kW)	(kW)	(kWh/mo)
Jan	3.0	-4.0	29.8	0.98	0.82	76
Feb	3.9	-1.1	32.7	0.96	0.81	88
Mar	4.5	5.3	39.1	0.93	0.78	109
Apr	5.1	13.7	47.5	0.89	0.74	114
May	5.8	20.5	54.3	0.85	0.72	129
Jun	6.2	25.7	59.5	0.83	0.69	129
July	6.2	28.0	61.8	0.82	0.68	131
Aug	5.7	26.4	60.2	0.82	0.69	122
Sept	4.8	21.9	55.7	0.85	0.71	102
Oct	3.8	15.5	49.3	0.88	0.74	87
Nov	2.5	6.7	40.5	0.92	0.77	58
Dec	2.3	-1.2	32.6	0.96	0.81	57
Avg:	4.5	13.2			kWh/y	r = 1202

Data for Homer

PV System Sizing

8 Questions

How many kWh/yr are required?

- How many peak watts of dc PV power are needed to provide that amount?
- What real components are available ?

Example

An energy efficient house in Fresno (Latitude at 22°) is to be fitted with a rooftop PV array that will annually displace all of the 3600 kWh/yr of electricity that the home uses.

○ Question: How many kW (dc, STC) of panels will be required and what area will be needed?

Assumptions:

- Roof is south-facing with a moderate tilt angle
- ⊠Annual insolation for L-15 is 5.7kWh/m²-day
- ⊠ Dc-to-ac conversion efficiency at 75%
- ⊠ Solar system average 1-sun efficiency at 12.5%

99

Sizing Solution

- Roof is south-facing with a moderate tilt angle
- 3 Annual insolation for L-15 is 5.7kWh/m²-day
- ₭ DC-to-AC conversion efficiency at 75%
- ₭ Solar Cell efficiency at 12.5%
- # 1. Annual Energy Equation

Ħ

Energy (kWh/yr) =
$$P_{ac}$$
(kW) · (h/day @1-sun) · 365 days/yr

2. AC Power
$$P_{ac} = \frac{3600 \text{ kWh/yr}}{5.7 \text{ h/dav} \times 365 \text{ davs/vr}} = 1.73 \text{ kW}$$
3. DC Power $P_{dc,STC} = \frac{P_{ac}}{\text{Conversion efficiency}} = \frac{1.73 \text{ kW}}{0.75} = 2.3 \text{ kW}$

4. Area Calculation
$$P_{dc,STC} = 1 \text{ kW/m}^2 \text{ insolation} \cdot A (\text{m}^2) \cdot \eta$$

$$A = \frac{2.3 \text{ kW}}{1 \text{ kW/m}^2 \cdot 0.125} = 18.4 \text{ m}^2 \text{ (198 ft}^2\text{)}$$

PV and Inverter Modules

Module:		Sha NE-K1	rp 25U2	Kyocera KC158G Multicrystal		Shell SP150 Monocrystal		U S	ini-Solar SSR256 junction a-Si	
Material:		Poly C	rystal					Triple		
Rated power P _{dc,STC}	:	125 W		/ 158		150	W		256 W	
Voltage at max powe	r:	26.0	V	23.	2 V	3.	4 V	(56.0 V	
Current at max powe	r:	4.80	A	6.8	2 A	4.4	A C		3.9	
Open-circuit voltage	Voc:	32.3	V	28.	9 V	43.4	4 V		95.2	
Short-circuit current	I_{SC} :	5.46	A	7.58 A		4.8 A		4.8		
Length:		1.190	m	1.290) m	1.619	9 m	11.	124 m	
Width:		0.792	m	0.990) m	0.814	4 m	0.	420 m	
Efficiency:		13.3		3% 12		11	1.4%		5.5%	
Aanufacturer:	Xa	ntrex	Xa	ntrex	Xa	ntrex	Sunn	у Воу	Sunny Boy	
Iodel:	STX	R1500	STX	R2500	P١	/ 10	SB2	2000	SB2500	
AC power: 150		00 W 25		00 W 10		00 W	2000 W		2500 W	
AC voltage:	211-	-264 V 21		11-264 V		208 V, 3Φ		251 V	198-251 V	
V voltage range MPPT:	44-	-85 V	44-	85 V	330-	600 V	125-	500 V	250-550 V	
Iax input voltage:	12	0 V	12	120 V		0 V	50	O V	600 V	
fax input current:					31.	9 A	10) А	11 A	
· · ·	0			- 51. 10% 04		5% 0		~ ~ ~	0.10	

101

Sizing Solution -- Continued

# PV Module selection		Kyocera
Kyocera KC158G 158-W module: 23.2V	Module:	KC158G
Number of modules?	Matarial	Multionutal
From DC Power = 2300W→ 2300/158=14.6	Rated power P_{dc} stc:	158 W
⊠ 2-string: 23.2x2=46.4V	Voltage at max power:	23.2 V
	Current at max power:	6.82 A
Circuit voltage (28.9x3=86.7V) is still below 120V max of the STXR2500 inverter	Open-circuit voltage V_{OC} : Short-circuit current I_{SC} :	28.9 V 7.58 A
3x5 (15 modules)	Length: Wildth	1.290 m
😤 Inverter Module	Efficiency:	12.4%
 Xantrex STXR2500 Inverter: MPPT Input voltage 44-85V Max input voltage: 120V 	Manufacturer:	Xantrex
Check if the energy requirement is met	Model:	STXR2500
Area = 15 modules \times 1.29 m \times 0.99 m = 19.1 m ² (206 ft ²)	AC power:	2500 W
$P_{dc,STC} = 158 \text{ W/module} \times 15 \text{ modules} = 2370 \text{ W}$	AC voltage: PV voltage range MPPT:	211–264 V 44–85 V
Energy = 2.37 kW \times 0.75 \times 5.7 h/day \times 365 day/yr = 3698 kWh/yr	Max input voltage:	120 V
	Max input current: Maximum efficiency:	94%

Excel Solution

rite	N HOI		isen Pag	e Layout	Form	ulas		view v	VIEW A	crobat		
5	6	Calibri	- 1	1 * A	A A 1	= =(_ &/*	Wra	p Text	General		-
Paste	3	BI	<u>u</u> • ,	- 3	<u>A</u> - I	FE	≣ ∲ ∲	-a- Mer	ge & Cente	r* \$*%	6 · .	0 .00 Cond
Clipboa	ird 🗔		Font		17		Alignr	nent		G N	umber	- Ga
	F27		• (f_x								
4	А		В		C			D		E	F	G
1 pe	ak sun [h/day]	Solar 1-sun	effic [DC2AC et	ffi	kWh/yr req	uired to p	<mark>produce</mark> P	Pac [kW]	Pdc [kW]	Area (m2)
2		5.7		0.125		0.75			3600	1.73035328	2.30713	8 18.4571
4		3.7		0.125		0.75			3600	2.66567938	3.55423	9 28.43391
5												
6												
7 o					Ē	=D2/(A	2*365)					
						С		D		E	F	G
(V)C	2AC eff	1 kWh/yr 0.75	required t	o produce 3600	Pac [kW]	Pdc [kW] 2.307138	Area (m2) 18.4571
							0.75		3600	2.09851355	2.798018	22.38414
L							0.75		3600	2.66567938	3.554239	28.43391
	B13	D PV										
				M	ath (Ca	<mark>d Sol</mark>	utio	n			
PV S:	izing.,	anc d	Charles K	M 1m 201:	ath(Ca	<mark>d Sol</mark>	utio	n			M
PV S: Backg itted	izing.) round) with	med An en a roof	Charles K ergy effic top PV arr	M im 201: cient h ay tha	ath(3 10 use ir 14 will	Ca(Fress	d Sol	utio	N at 22 de f the 36	:grees) is 00 kWh/ye	to ve ar of	2b97 PV Sizing.xm
PV S: Backg itted lectr	izing.; (round) (with victy t	cmcd An en a roof hat thu	Charles K ergy effic top PV arr e home use	M im 201: tient h cay that s.	ath(3 10 will	Ca(Fress	<mark>d Sol</mark> no, CA (La Lly replac	Utio atitude . re all or	<mark>N</mark> at 22 de f the 36	grees) is 00 kWh/ye	to ve ar of	2b97 PV Sizing.xm
PV S: Backg Litted Lectr Assum 1) Ro	izing., round) with victy t uption) of is	cmcd An end a roof hat the : south :	Charles K ergy efficiency top PV arm b home use Eacing will	Im 201: tient h ay that the a moo	ath(3 ouse ir it will	Ca(Fress annual tilt of	d Sol no, CA (Ld 11y replac angle.	Utio stitude of se all of	N at 22 de f the 36	grees) is i00 kWh/ye	to ve ar of	2b97 PV Sizing.xm
PV S: Backg itted Lectr Assum 1) Ro 2) An 3) DC	izing.; round) with icty t ption) of is -nual I -to-AC	cmcd An en a roof hat the : south : nsolat conve:	Charles K ergy effic op PV ar: e home use Eacing wit ion for L- csion eff:	im 2013 sient h cay that ss. th a mo 15 is iciency	ath 3 ouse ir it will oderate 5.7 kWh 7 is 75%	Ca(Fresh annua tilt d	d Sol no, CA (La 11y replac angle. ay> (Utio atitude . 20 all o 5.7 Peal	n at 22 de f the 36 k Sun Ho	grees) is 500 kWh/ye urs)	to ve ar of	2b97 PV Sizing.xm
PV S. Backg Lectr Assum 1) Ro 2) An 3) DC 1) PV	izing.; round) with icty t of is nual I -to-AC (array	mod An env a roof hat thu south : nsolat: conve: average	Charles K ergy effic top PV arg e home us Eacing wit ion for L- csion effi ge 1-sun o	Im 201: tient h cay that as. th a mo -15 is ciency efficie	ath(3 ouse in t will derate 5.7 kWh is 75% oncy (or	Ca Fress annua tilt a /m ² -da	d Sol no, CA (La lly replac angle. ay> (cifty Fact	Utio atitude - se all o: 5.7 Peal cor, CP):	n at 22 de f the 36 k Sun Ho is 12.5%	egrees) is 00 kWh/ye urs)	to ve ar of	2b97 PV Sizing.xm
PV S: Jackg Ltted Lectr Assum L) Ro 2) An J) DC 1) PV	izing.; round) with icty t uption) of is nual I -to-AC 7 array	cmod An en a roof hat the south : south : conve: avera y kW	Charles K ergy effic top PV arr e home use Eacing wit ion for L- resion effi ge 1-sun of (DC rating	M im 201: bient h ay that ss. th a mo 15 is toiency fficiency fficiency fficiency	ath(3 ouse ir it will 5.7 kWH r is 75% nocy (or nocy (or	Ca(Fress annual tilt a (/m ² -da Capac s will	d Sol no, CA (L4 lly replac angle. ay> (cifty Fact l be requi	Utio stitude of se all of 5.7 Peal for, CF) ired and	n at 22 de f the 36 k Sun Ho is 12.5% what ar	egrees) is 100 kWh/ye urs) 5 5: will be	to ve ar of needed?	2b97 PV Sizing.xm
PV S: 3ackg itted Lectr 2) An 3) DC 1) PV 1) PV)): H	izing.; round) with icty t uption) of is nual I -to-AC (array (ow man	cmcd An en a roof hat the : south : nsolat: conve: avera y kW	Charles K ergy effic top PV arg bome use Eacing with ion for L- rsion effic ge 1-sun of (DC rating	im 201: cient h cay tha ss. th a mo 15 is iciency ffficie g) of P	ath 3 ouse ir t will oderate 5.7 kWr is 75% ncy (or V panel An	Ca(Fresh annual tilt d '/m ² - da Capac s will nual E	d Sol no, CA (La lly replac angle. ay> (cifty Fact l be requi mergy Pro	ution atitude of se all of 5.7 Peak or, CF) ired and duction	T at 22 de f the 36 k Sun Ho is 12.5% what ar Equation	egrees) is 00 kWh/ye urs) :e will be n (for PV)	to ve ar of needed?	2b97 PV Sizing.xm
PV S: 3ackg itted Lectr 1) Ro 2) An 3) DC 1) PV)): H	izing.; round) with icty t uption) of is nual I -to-AC f array (ow man	cmcd An env a roof hat thu : south : nsolat: conve: avera y kw	Charles K ergy effic top PV arr e home us Eacing wit ion for L- csion effi ge 1-sun o (DC rating	M im 201: tient h cay that es. th a mo- 15 is triency officie g) of P	ath a ouse in t will derate 5.7 kW r is 75% nocy (or V panel Anv	Ca(Fress annual tilt d /m ² -da Capad s will nual E	d Sol no, CA (La 11y replac angle. ay> (cifty Fact 1 be requi inergy Pro	Utio atitude of the all of tor, CF) ared and duction	T at 22 de f the 36 k Sun Ho is 12.5% what ar Equation	egrees) is 00 kWh/ye urs) ; :e will be n (for PV)	to ve ar of needed?	2b97 PV Sizing.xm
PV S: dackg ltted Lectr Assum 1) RO 2) Ann 3) DC 1) PV)): H	izing.; round) with icty t sption) of is nual I '-to-AC ' array (ow man	med An en a roof hat the south : south : conve: avera y kw	Charles K ergy effic top PV arr e home uso Eacing wit ion for L- csion effi ge 1-sun ((DC rating	M im 201: cient h ay tha ss. ch a mo c15 is iciency efficie g) of P	ath(3 ouse ir it will 5.7 kWr is 75% oncy (or V panel Ann Ene	Cac Fress annual tilt a /m ² -da Capac s will nual E rgy (kV	d Sol no, CA (Ld lly replac angle. ay> (cifty Fact l be requi Energy Pro Wh/yr) = P _a	Ution stitude of se all of 5.7 Peal for, CF): ired and duction e(kW) · ()	n at 22 de f the 36 k Sun Ho is 12.5% what ar Equation h/day @1	:grees) is 500 kWh/ye: urs) ; :e will be n (for PV) -sun) · 365 (to ve ar of needed? lays/yr	2b97 PV Sizing.xm
PV S: Sackg Lectr Assum 1) Ro 2) An 3) DC 1) PV)): H	izing.; round) with icty t ption) of is nual I -to-AC r array	cmcd An end a rooff hat the : south : nsolat: conve: avera y kW	Charles K ergy effic top PV arg e home uso facing wit ion for L- csion eff: ge 1-sun o (DC rating	im 201: cient h cay that s. th a mo 15 is ciency efficie g) of P	ath(3 ouse in t will oderate 5.7 kW is 75% oncy (or V panel Ann Ene	Ca(Fresh annual tilt a '/m ² - da Capac s will nual E rgy (kV	d Sol no, CA (La lly replac angle. ay> (cifty Fact l be requi inergy Pro Wh/yr) = P _a	Utio atitude \therefore se all of 5.7 Peal or, CF) ired and duction $c(kW) \cdot (l)$	n at 22 de f the 36 k Sun Ho is 12.5% what ar Equation h/day @1	egrees) is 000 kWh/ye urs) :e will be n (for PV) -sun) - 365 c	to ve ar of needed? łays/yr	2b97 PV Sizing.xm
PV S. Backg Lettr Assum D) Ro 2) An 3) DC 1) PV D): H	izing.; round) with icty t ption) of is nual I -to-AC ' array (ow man	cmcd An end a roof hat thu : south : nsolat: conve: averau y kw	Charles K ergy effic top PV arr e home uso Eacing with ion for L- rsion effi ge 1-sun o (DC rating	M im 201: bient h as. th a mo -15 is ciency efficie g) of P	ath a ouse ir it will oderate 5.7 kW r is 75% ncy (or V panel An Ene	Ca(Fress annual tilt a 'Capac s will nual E rgy (kV	d Sol no, CA (L4 lly replac angle. ay> (cifty Fact l be requi chergy Pro Wh/yr) = P _d	Utio atitude of the all of tor, CF) ired and duction $_c(kW) \cdot (l)$	n at 22 de f the 36 k Sun Ho is 12.5% what ar Equation h/day @1	sgrees) is 00 kWh/ye urs) s te will be n (for PV) -sun) - 365 c	to ve ar of needed? lays/yr	2b97 PV Sizing.xm
PV S: Backg Ltted Lectr Assum 1) Ro 2) An 3) DC 1) PV)): H	izing., round) with icty t of is nual I -to-AC array for man	cmod An en a roof hat thu: south : nsolat conve: avera y kW	Charles K ergy effic top PV arg e home use Eacing with ion for L- ssion effic ge 1-sun ((DC rating	M im 201: bient h ay that ss. th a mo 15 is iciency fficiency g) of P	ath(3 ouse ir it will 5.7 kWr is 75% rory (or NV panel Ann Ene	Ca(annual tilt a capac s will nual E rgy (kV	d Sol no, CA (Ld lly replac angle. ay> (cifty Fact l be requi snergy Pro Wh/yr) = P _a	Ution stitude of se all of 5.7 Peal for, CF): ired and duction $_c(kW) \cdot (l)$	n at 22 de f the 36 k Sun Ho is 12.5% what ar Equation h/day @1	:grees) is 500 kWh/ye urs) ; :e will be n (for PV) -sun) · 365 (to ve ar of needed? lays/yr	2b97 PV Sizing.xm
PV S: Backg Lectr Assum 2) An 3) DC 1) PV D): H	izing.; round) with icty ti pption) of is nual I -to-AC ' array tow man Sacramento Sacramento Frances Frances Frances	mod An end a roof hat the south : nsolat: conve: avera y kW	Charles K ergy effic top PV arg home use facing with ion for L- csion efficience ge 1-sun of (DC rating	M im 201: cient h cay that s. th a mo -15 is ciency efficie g) of P	ath(3 ouse ir t will derate 5.7 kWr is 75% oncy (or V panel Ann Ene	Ca(Fresh annual tilt a '/m ² -da Capac s will nual E rgy (kV	d Sol no, CA (Ld lly replac angle. ay> (cifty Fact l be requi chergy Pro Wh/yr) = P _a	Utio atitude \therefore se all of 5.7 Peal or, CF) ired and duction $_c(kW) \cdot (1)$	n at 22 de f the 36 k Sun Ho is 12.5% what ar Equation h/day @1	egrees) is 00 kWh/ye urs) ; :e will be n (for PV) -sun) · 365 (to ve ar of needed? lays/yr	2b97 PV Sizing.xm
PV S. Backg Lectr Assum 1) Ro 2) An 3) DC 1) PV 9): H	izing.; round) with icty t ption) of is nual I -to-AC ' array (ow man	cmcd An end a roof hat thu: south : conve: averat y kW	Charles K ergy effic top PV arrest ion for L- resion efficient (DC rating Carton efficient (DC rating	M im 201: bient h ay that s. th a mo- 15 is ciency efficie g) of P	ath(3 ouse ir it will oderate 5.7 kWH r is 75% ncy (or V panel Ann Ene	Ca(Fress annual tilt a Capac s will nual E rgy (kV	d Sol no, CA (La lly replac angle. ay> (cifty Fact l be requi mergy Pro Wh/yr) = Pa	Ution stitude of ce all of cor, CF): ired and duction $_c(kW) \cdot (0)$	n at 22 de f the 36 k Sun Ho is 12.5% what ar Equation h/day @1	sgrees) is 00 kWh/ye urs) :e will be n (for PV) -sun) · 365 (to ve ar of needed? lays/yr	2b97 PV Sizing.xm
PV S: 8ackg itted Lectr Assum 1) Ro 2) An 3) DC 1) PV 0): H	izing.s round) with icty t of is nual I -to-AC array (ovr man Sacramento Sacramento	cmod An end a rooff hat thu: south : nsolat conve: avera y kW	Charles K ergy effic cop PV ar: e home uso Eacing with ion for L- csion effic ge 1-sun ((DC rating	M im 201: bient h ay that ss. th a mo 15 is totency officiency officiency officiency	ath(3 ouse ir it will 5.7 kWr is 75% is 75% forcy (or w panel Ann Ene	Ca(annual tilt a capac s will nual E rgy (kV	d Sol no, CA (Ld lly replac angle. ay> (cifty Fact l be requi snergy Pro Wh/yr) = P _a	Utio atitude of the all of tor, CF): ared and duction $_c(kW) \cdot (1)$	n at 22 de f the 36 k Sun Ho is 12.5% what ar Equation h/day @1	:grees) is 500 kWh/ye: urs) : :e will be n (for PV) -sun) · 365 (to ve ar of needed? lays/yr	2b97 PV Sizing.xm

MathCad

SOLUTION

- 1. Annual Energy (AC) Required is 3600 kWh (Eann): Eann = 3600 kWh/year PSH := 5.7 Peak sun hour
- 2. Required AC Power Generation from PV system (Pac):

 $Pac := \frac{Eann}{PSH \times 365} = 1.7304 \qquad kW$

3. Required DC Power Generation from PV array (Pdc): D2A := 0.75 DC to AC Conversion $Pdc := \frac{Pac}{D2A} = 2.3071$ kW

4. PV Array Area (A):
$$P_{dc,STC} = 1 \text{ kW/m}^2 \text{ insolation} \cdot A (\text{m}^2) \cdot \eta$$

PV Efficiency (η): $\eta := 0.125$

$$\mathbf{A} := \frac{\mathbf{Pdc}}{\mathbf{1} \times \mathbf{\eta}} = \mathbf{18.4571} \qquad \mathbf{m}^2$$

5. Selection of PV Module

6. Selection of Inverter Module

105

100

MathCad

Module:	Kyocera KC158G
Material:	Multicrystal
Rated power $P_{de,STC}$:	158 W
Voltage at max power:	23.2 V
Current at max power:	6.82 A
Open-circuit voltage Voc:	28.9 V
Short-circuit current Isc:	7.58 A
Length:	1.290 m
Width:	0.990 m
Efficiency:	12.4%

Prated := 0.158

```
Manufacturer:
                      Xantrex
Model:
                     STXR2500
                      2500 W
AC power:
                    211-264 V
AC voltage:
PV voltage range
                     44-85 V
 MPPT:
Max input voltage:
                       120 V
Max input current:
                        94%
Maximum efficiency:
```

PVwid := 0.99

PVlen := 1.29

NEC Article 690

Grid-Connected PV System Economics

Estimation of the cost of electricity generated by PV

- Amortizing cost of **Principal (P \$)** over a **period (***n* year) with **interest** rate of *i* for Loan payment.
- \triangle Annual Payment (A \$/yr) divided by Annual kWh \rightarrow \$/kWh $CRF(i, n) = \frac{i(1+i)^n}{(1+i)^n - 1}$
- **CRF** (Capital Recovery Factor):
- **#** Annual Loan Payment (A):

$$A = P \cdot \operatorname{CRF}(i, n)$$

Example: A PV system costs \$16,850 to deliver 4000 kWh/yr. If the system is paid for with a 6% 30-year loan, what would be the cost of electricity, ignoring income tax benefit, loan tax deduction, etc?

$$CRF(i, n) = \frac{i(1+i)^n}{(1+i)^n - 1} = \frac{0.06(1.06)^{30}}{(1.06)^{30} - 1} = 0.07265/yn$$

$$A = P CRF(i, n) = \$16,850 \times 0.07265 / yr = \$1224 / yr$$

Cost of electricity =
$$\frac{\$1224/\text{yr}}{4000 \text{ kWh/yr}} = \$0.306/\text{kWh}$$

- 1	- 1	4
1	1	

							Exce	el S	ol	ution				
X	- 11) - I	(° - -	Ŧ	-	_	-	_	-	-			1		
Fi	le Ho	ome	Ins	ert Page	. Layout	Formu	ilas Data	Revi	ew	v		6		
-	.	Calibr		× 11	A*	=	= <u> </u>	Ø., .						
	l 📭 -	-				A				int ²				
Pas	^{ce} 🛷	в	<u> </u>	[* <u> </u> *	<u><</u> ∧ + <u>A</u>			₣ १₽	•a• Me	erg				
Clipt	oard 🕞			Font		- Fa		Alignme	nt					
_	G1	3		▼ (°	f _x					-		B	134 COE.xlsx	
1	A	B :	C	D	E	F	G	61	H					
2	ر ب 16850	0.06	30	0.072649	1224.13	4000	0.	11 31						
3	16850	0.05	30	0.065051	1096.12	4000	0.	27						
4	16850	0.04	30	0.05783	974.44	4000	0.	24						
5	16850	0.03	30	0.051019	859.67				-	_ N_	_			
5	16850	0.02	30	0.04465	752.35		D2		- • (⊨ kr fs	=(B2*(1	L+B2)^C	2)/((B2+1)^C2-1)
7	16850	0.01	30	0.038748	652.91	1		D		0			0	
0							A	В	L	U	E	r	G	н
						1	P [\$]	i	n	CRF	A [\$/yr]	kWh	COE [\$/kWh]	
						2	16850	0.06	30	0.072649	1224.13	4000	0.31	
						3	16850	0.05	30	0.065051	1096.12	4000	0.27	
						4	16850	0.04	30	0.05783	974.44	4000	0.24	
						5	16850	0.03	30	0.051019	859.67	4000	0.21	
						6	16850	0.02	30	0.04465	752.35	4000	0.19	
						7	16850	0.01	30	0.038748	652.91	4000	0.16	
						8								

MathCad Solution

2b110 PV PV Economics.xmcd Charles Kim 2013 Economics.xmcd (Background) A PV system costs \$16,850 to deliver 4000 kWh per year. The system is paid fro 🚩 with a 6% 30-year loan. (Q): What would be the cost of electricity. Ignore income tax benefit, loan tax deduction, etc. SOLUTION Annual Energy (Eann): Eann:= 4000 kWh Interest rate (i): i := 0.06 Project Period (n): n := 30 years $CRF(i, n) = \frac{i(1+i)^n}{(1+i)^n - 1}$ Capital Recovery Factor (CRF): $CRF := \frac{i \times (1+i)^n}{(1+i)^n - 1} = 0.0726$ P := 16850 ^{\$} Principal (P): $A = P \cdot \operatorname{CRF}(i, n)$ Annual Loan Payment (A): $\mathbf{A} := \mathbf{P} \times \mathbf{CRF} = 1.2241 \times 10^3 \qquad \$/\texttt{year}$ $COE := \frac{A}{Eann} = 0.3060 \qquad \text{$/kWh}$ Cost of Energy (COE):