Design and Simulation of Micro-Power System of Renewables

Charles Kim, Ph.D.

Howard University, Washington, DC USA

- Citation: Charles Kim, "Lecture notes on Design and Simulation of Micro-Power Systems of Renewables", 2013. Washington, DC. Available at <u>www.mwftr.com</u>
 - Note: This lecture note is a compilation of a 5-day lecture given at the Korean University of Technology Education in January 2013.

1

5. Modeling using HOMER – Part 2 Practice 2 & Grid-Connected Micropower System

Charles Kim, Ph.D. Howard University, Washington, DC USA

January 21-25, 2012

Course Contents and Schedule

🔀 Day 4

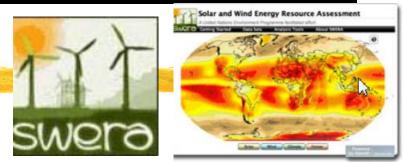
HOMER Simulation 2

⊠Grid Data Details

⊠Grid-Connected System Design

Team Practice

⊠Isolated or **Grid-Connected** Power System Design


🔀 Day 5

EXTeam Presentation

⊠Summary and Conclusions

On SWERA

- 2001: The Solar and Wind Energy Resource Assessment (SWERA)
 - began with support from the Global Environment Facility within the United Nations Environment Program (UNEP) with contributions by many national agencies.
 - SWERA was initially a country-centric project focused on the production of National Solar and Wind Assessments supporting renewable energy decision makers in 13 countries within a global framework that included several continental datasets.
 - Ethiopia, Kenya, Ghana, Bangladesh, China, Nepal, Sri Lanka, Brazil, Cuba, El Salvador, Guatemala, Hondurans, and Nicaragua

Agency/Company United Nations Environment /Organization Programme

	5
	National Renewable Energy Laboratory, German Aerospace Center (DLR), Risoe National Laboratory for Sustainable Energy, Brazil's National Institute for Space Research (INPE), State University of New York (SUNY), Technical University of Denmark (DTU), UNEP Global Resource Information Database (UNEP/GRID), NASA, Global Environment Facility (GEF)
Sector	Energy
Focus Area	Solar, Wind
Topics	Resource assessment, Pathways analysis
Resource Type	Software/modeling tools, Maps, Dataset
User Interface	Website
Website	http://openei.org/SWERA

SWERA

- 2005: support from NASA, SWERA began the transition into a global decision support system (DSS) with integrated tools including prototype small hydropower assessments to complement the solar and wind assessments.
 - NASA global renewable energy assessments and climate data were integrated into SWERA to provide global coverage and a more complete portfolio of information needed to assess the global renewable energy potential.
 - United States National Renewable Energy Laboratory (NREL) contributed renewable energy expertise and 27 national data sets.

Data Set

- Bata obtained from the NASA Science Mission Directorate's satellite and re-analysis research programs
- # Parameters were validated based on recommendations from partners in the energy industry
- Continued to adapt and tailor updated and new data sets from NASA's satellite observation analysis and modeling program.
- Here Clouds and Earth's Radiant Energy System (CERES) computes the most accurate global surface radiation fluxes using radiance and retrievals to date. These fluxes include the computation of direct and diffuse fluxes.
- 8 Other data: tilt irradiance, direct normal irradiance, global horizontal irradiance, wind, relative humidity, atmospheric pressure, air temperature, etc.
- ₭ For Solar, NASA data exist for 22 years globally.
- How Control Control

HOMER practice 2: Making a New file from scratch

2030 A D.U

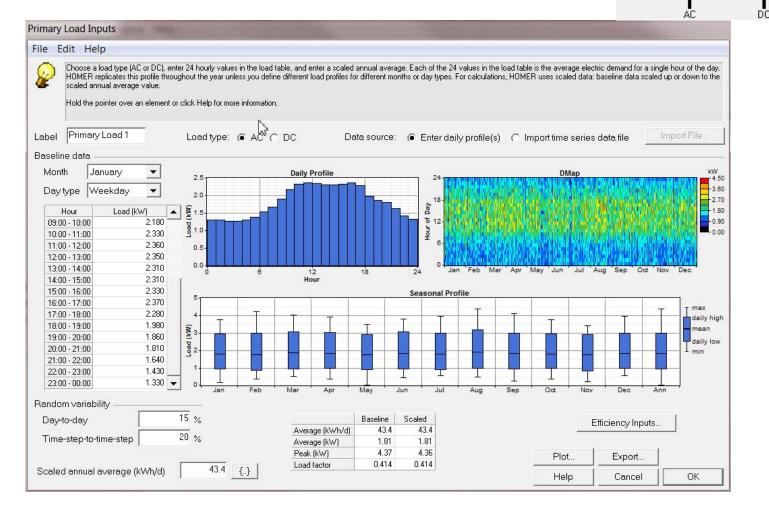
- ₩ HOMER
- ¥ File > New
- ₭ Click "Add/Remove"
- HOMER [Project1 *] File View Inputs Outputs Window 🕻 File View Inputs Outputs Window He 🗋 🚅 🔚 🗃 III 📓 😭 🤋 ቦነ New Ctrl+N Equipment to consider Add/Remove... hr õ, Open... Ctrl+O Close Click the Add/Remove Save Ctrl+S button to add loads and Se Save As. components.
- Select: Primary Load, PV, Wind Turbine 1, Converter, and Generator1

.oads	- Components		
🧟 🔽 Primary Load 1	🛷 🔽 PV	🕒 🔽 Generator 1	🗇 🔽 Battery 1
🧟 🦵 Primary Load 2	🗼 🔽 Windside 4A	🗁 🥅 Generator 2	🗂 🥅 Battery 2
🧟 🦵 Deferrable Load	🗼 🥅 Wind Turbine 2	🖧 🥅 Generator 3	🗐 🥅 Battery 3
🍊 🦵 Thermal Load 1	🄯 🥅 Hydro	😓 🥅 Generator 4	🗐 🥅 Battery 4
🍊 🦵 Thermal Load 2	🖾 🔽 Converter	😓 🥅 Generator 5	🗐 🥅 Battery 5
🐉 🥅 Hydrogen load	📋 🦵 Electrolyzer	😓 🥅 Generator 6	🗐 🥅 Battery 6
	🤝 🥅 Hydrogen Tank	😋 🥅 Generator 7	🗇 🥅 Battery 7
	🗯 厉 Reformer	😓 🥅 Generator 8	🗇 🥅 Battery 8
		😋 🦵 Generator 9	🗐 🥅 Battery 9
		🗁 🥅 Generator 10	🗂 🥅 Battery 10
	Grid		
	Do not model grid		
	千 🕥 System is connected to	grid	

Load Data

Equipment to consider

2


Generator 1

Primary Load 1

~

Converter

- **HOMER** buttons appear
- **H** NOW click the load button
- How Type in the load [kW] every hour period

8

Add/Remove..

Windside 4A

Load Profile Example

H Load Data Example Small Commercial Load Profile [kW] 0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1.31 1.30 1.27 1.27 1.30 1.39 1.54 1.67 1.90 2.18 2.33 2.36 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2.35 2.31 2.31 2.33 2.37 2.28 1.98 1.86 1.81 1.64 1.43 1.33 Daily Total [kW]44.60 Stret Light Load Profile [kW] 0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 3.24 3 24 3.24 3.24 3.24 2.62 1.40 0.18 1.90 0.00 0.00 0.00 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 $0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.42 \ 0.88 \ 1.28 \ 2.47 \ 3.24 \ 3.24 \ 3.24$

How about Load Profile for this Mobile Security on Demand?

Hobile security: 2 PV, 4 cameras, Digital recording, battery charger circuits, battery status of charge monitoring and wireless alerting.

Import XLM File from SWERA

SWERA

 \square Lat & Longs \rightarrow Get Homer

From the XLM data screen

 \boxtimes CTRL+S (save to a xIm file)

KNow with HOMER

☐ File>"Import XLM"

Wind Resources are automatically filled

Solar Resources are automatically filled

 \boxtimes Lat N, Long E \rightarrow marking error

 \boxtimes But kWh/m2 is kept the same.

Generator Information

aupment to conside

Generator

- Now arrow appearsfrom AC bus to load
- ₭ Click "Generator"
- Size: 5.0 kW
- 8 Capital: \$2000
- ₭ Replacement: \$2000
- ₩ O&M: \$0.02/hr
- Sizes to consider:0, 2.5kW, 5.0kW
- Minimum loadcapacity: 30%


Converter	Windside 4A
enerator Inputs	DC
Choose a fuel, and enter at least one size, capital cost and operation and m	naintenance (0&M) value in the Costs table. Note that the capital cost includes g hour. Enter a nonzero heat recovery ratio if heat will be recovered from this generator nsider each generator size in the Sizes to Consider table.
Costs Size (kW) Capital (\$) Replacement (\$) D&M (\$/ht) 5.000 2000 2000 0.020 {} {} {} Properties	Sizes to consider Size (kW) 0.000 2.500 5.000 5.000 Cost Curve 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Minimum load ratio (%) 30 _{}	Help Cancel 12 OK

Add/Remove...

Ę

Primary Load 1 43 kWh/d

4.4 kW peak

Wind Resources

Click Wind Resources Button

Location of your choice

- Your side of street lights
- Your (future) vacation home

% Find Latitude and Longitude

Find Wind Speed [m/s] using SWERA or WINDFINDER

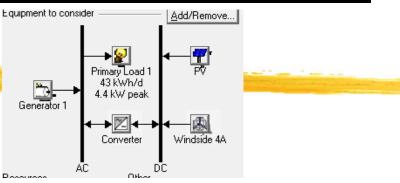
Type in the speed

Control	R uses wind resource inputs t ations, HOMER uses scaled d how HOMER generates the i ne pointer over an element or	ata: baselin 3760 hourly	e data so values f	caled up rom the	or down 12 month	to the so	caled ann	nual ave	r the ave age valu	rage win ie. The a	d speed I dvanced	for each paramet	month. Fi ers allow	or you to
Data source Baseline da	2	erages	⊖ In	nport ti	me ser	ies dati	a file		Import	File				
1	Wind Speed													
Month	(m/s)	1.0		3 2		2		Wind R	esource		1			
January	0.000	- 0.0												
February	0.000	(s/m) peeds 0.4- put 0.2-												
March	0.000	D 0.6				-								
April	0.000	bee												
May	0.000	ο 0.4- 2												
June	0.000	\$ 0.2-							_					
July	0.000													
August	0.000	0.04	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Septembe	er 0.000					1	-				(Å			
October	0.000	Otherp	oarame	eters -					Advanc	ced pa	rameter	rs		
Novembe	r 0.000	A [#i#i	do (m.	ahovo	sea lev	ion E		0	Weib	sulliz			1	2
Decembe	r 0.000	Alutu	ue (m s	anove	sea iev	ven		0	weld	Juli K				2
		Aner	nomete	er heig	ht (m)			10	Auto	correla	tion fac	tor		0.85
			Ve	riation	With H	' leight	Ĩ.		Dium	nal patt	ern stre	ngth	-	0.25
Annual	average: 0.000		S				_		Hour	ofpea	k winds	speed		15
Scaled	annual average (m/s)		0.	[}					Plot. Help			ort ncel	14	OK

PV Information

- ₿ Click "PV"
- K Size: 2kW
- **#** Capital: \$7000
- Replacement:\$7000
- ₩ O&M: \$0/yr
- Sizes to consider: 0, 2kW, 4kW

Ħ


Inputs	
	the Costs table. Include all costs associated with the PV (photovoltaic) system, including modules, mounting e optimal system, HOMER considers each PV array capacity in the Sizes to Consider table.
	ilue equal to the latitude from the Solar Resource Inputs window.
osts	Sizes to consider
Size (kW) Capital (\$) Replacement (\$) 0&M (\$	
2.000 7000 7000	0 0.000 12 0.000 2.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
{.} {.}	
{} {}	6 0.000 2.000 4.000 € 10 8 8 5 0 4 0 0 1 2 3 5 12 5 12 5 10 5 10
{} {} operties	0 0.000 2.000 4.000 4.000 6 6 6 7 6 7 8 8 9 8 9 9 10 110
{} {} operties	0 0
{} {} operties	Image: Constraint of the second se
{} {} operties Dutput current C AC I DC	Image: state of temperature
{} {} operties	0 0

Solar Resources Information

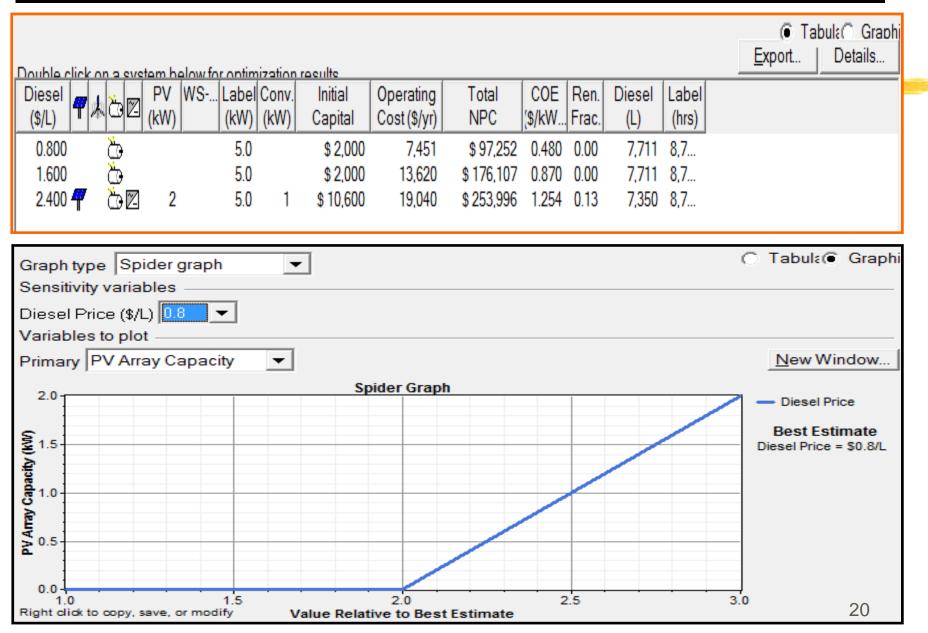
	in the solar radiation daned from SWERA	Ata Resources Solar resource Mind resource Differ System control Diesel Diesel Constraints
Fi	e Edit Help HOMER uses the solar resource inputs to calculate the PV array power for each hour of the year. Enter the average clearness index for each month. HOMER uses the latitude value to calculate the average daily in Hold the pointer over an element or click Help for more information.	
c	Latitude • • • • North O South Time zone Longitude • • • • • East O West (GMT) Iceland, UK, Ireland, ata source: • Enter monthly averages O Import time series data file Get Data	West Africa
	Month Index (kWh/m2/d) January 0.280 2.820 February 0.355 3.690 March 0.427 4.490 April 0.529 5.400 June 0.536 4.990 July 0.442 4.170 August 0.423 4.190 September 0.382 3.950 October 0.343 3.550 November 0.257 2.550	1.0 0.8 0.6 0.4 0.2 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1
	Average: 0.401 4.011 Scaled annual average (kWh/m²/d) 4.01	Plot Export Help Cancel

Converter Information

- \Re Converter (DC \rightarrow AC)
- Bize: 1kW
- 800 Capital: \$800
- ₩ O&M: \$0
- Bizes to consider: 0, 1, 2 kW

onverter Inputs	and the second se
File Edit Help	
both. Enter at least one size and capital cost value in the Costs table. Include all	bad or vice-versa. A converter can be an inverter (DC to AC), rectifier (AC to DC), or costs associated with the converter, such as hardware and labor. As it searches for s to Consider table. Note that all references to converter size or capacity refer to
Size (kW) Capital (\$) Replacement (\$) 0&M (\$/yr) 1.000 800 800 0 } {} {} {}	Sizes to consider
Inverter inputs	- 0,0 0,5 1,0 1,5 2,0 Size (kW)
Lifetime (years)	Capital — Replacement
Efficiency (%) 90 {}	
$\overline{ {\boldsymbol{\checkmark}} }$ Inverter can operate simultaneously with an AC generator	
Rectifier inputs	
Capacity relative to inverter (%) 100 {} Efficiency (%) 85 {}	
	Help Cancel OK

17

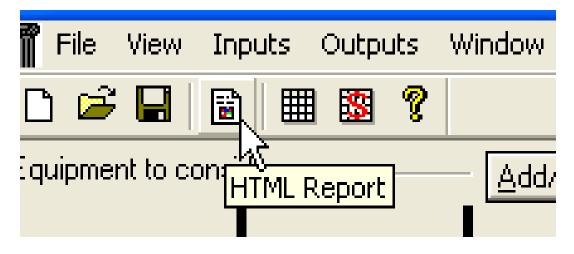

Diesel Resources Information

		Resources	- Other
₭ Fuel Price: \$0.8/L		🕵 Solar resource 🐑 Wind resource	Economics
% Sensitivity Price: \$0.8, 1.6, 2.4/L		Diesel	
Simulations: 144 of 144 Diesel Inputs File File Edit Help Enter the fuel price. The fuel properties can only be changed when creating a the Generator Inputs or Boiler Inputs window).	Prograce:		Constraints
Hold the pointer over an element name or click Help for more information.	Sensitivity Values		
Price (\$/L) 0.8 {} Limit consumption to (L/yr) 5000 {} Fuel properties	Variable: Diesel Price Units: \$/L Link with: <none> Values: 1 0.800 2 1.600 3 2.400 4 5 6 7 8 9 10 11 12 10</none>	Clear	
	Help	Cancel	ОК

Simulation

		Sensitivity R	esults O	ptimization R	esults						
	Lan Deault	Sensitivity va	ariables –								
Optimizat	tion Result	Diesel Price	(\$/L) 2.4	-							
•		Double click	on a syste	m below for	simulation resu	lts.				Cate	egoriz 🖲 Ov
		i 🖉 🖈 🖂 📄	PV WS			Operating	Total	COE	Ren.	Diesel	Label
		╡┦҄҄ѧ҅ѽ҄҄҄፟፟፟፟፟	(kW)	(kW) (k)	V) Capital	Cost (\$/yr)	NPC	(\$/kWh)	Frac.	(L)	(hrs)
		7 000	2	5.0	1 \$ 10,600	19,040	\$ 253,996	1.254	0.13	7,350	8,754
		^{Co}	~	5.0	\$ 2,000	19,788	\$ 254,962	1.259	0.00	7,711	8,759
		7 <u>6</u> 2 7 62	2 4	5.0 5.0	2 \$12,200 2 \$19,200	19,056 18,596	\$ 255,798 \$ 256,925	1.263 1.269	0.13 0.24	7,339 7,123	8,754 8,658
			4	5.0	1 \$17,600	18,836	\$ 258,390	1.205	0.24	7,235	8,743
		7 60	6	5.0	2 \$26,200	18,239	\$ 259,355	1.281	0.33	6,952	8,517
		🛉 🕁	6	5.0	1 \$24,600	18,781		1.307	0.32	7,181	8,735
		🛉 🖈 🔁	2	1 5.0	1 \$40,600	20,107	\$297,631	1.470	0.15	7,310	8,753
		¶≉,⇔⊠	2	1 5.0	2 \$42,200	20,116		1.478	0.15	7,296	8,753
		AĢ⊠		1 5.0	1 \$ 33,600		\$ 300,205	1.482	0.02	7,653	8,759
		▁ <u><u></u></u>	4 4	1 5.0	2 \$49,200		\$ 300,683	1.485	0.26	7,086	8,652
			4	1 5.0 1 5.0	1 \$47,600 2 \$35,200		\$ 302,339 \$ 302,348	1.493 1.493	0.25	7,204 7,653	8,742 8,759
		7 100	6	1 5.0	2 \$56,200		\$ 303,343	1.498	0.02	6,923	8,514
		# \$\$0	6	1 5.0	1 \$54,600		\$ 308,802	1.525	0.33	7,156	8,735
		Generator 1	1 kW Rec	tifier				L)E: \$1.254/kW	
	5 kW 1 kW Cost Summary Cash Flow	Generator 1 Inverter			15,841 1	% 100 100	Excess Unmet e Capacity	Li O Iantity k\ electricity	evelized CC perating Cc //h/yr 3 1,737 0000340 0.00 Value		
	5 kW 1 kW Cost Summary Cash Flow Production kX PV array Generator 1	Generator 1 Inverter Electrical PV wh/yr 2 2,341 13 15,396 87		nverter Emissi Consumptior AC primary load Total	kWh/yr 15,841	00	Excess Unmet e Capacity	lantity kN electricity electric load 0. 9 shortage Quantity	evelized CC perating Cc //h/yr 3 1,737 0000340 0.00 Value	DE: \$1.254/kW sst \$19,040/y \$ 9.79 0.00 0.00	r
	5 kW 1 kW Cost Summary Cash Flow Production kA PV array Generator 1 Total	Generator 1 Inverter Electrical PV wh/yr 2 2,341 13 15,396 87		nverter Emissi Consumptior AC primary load Total	kWh/yr 15,841 15,841	00	Excess (Unmet e Capacity Renewa	lantity kN electricity electric load 0. 9 shortage Quantity	evelized CC perating Cc //h/yr 3 1,737 0000340 0.00 Value	DE: \$ 1.254/kW ust: \$ 19,040/yr \$ 9.79 0.00 1.132 PV Genera	r

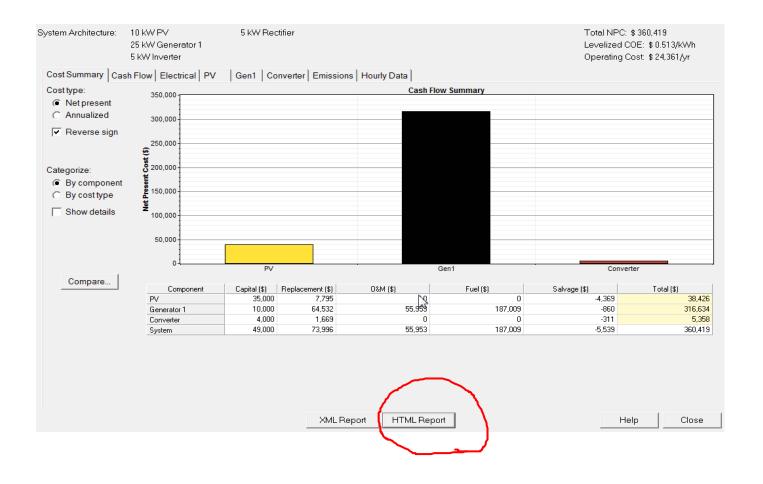
Sensitivity Analysis


HOMER – Example Equipment Cost

Component	Size	Capital Cost (\$)	Replacement Cost	O&M Cost (\$)	Lifetime
PV Panels	0.05 – 5.0 kW	\$7,500/kW	\$7,500/kW	0.00	20 years
Trojan T-105 Batteries	225 Åh / 6 volt (bank size: 1 – 54 batteries)	\$75/battery	\$75/battery	\$2.00/year	845 kWh of throughput per battery
Converter	0.1 – 4.0 kW	\$1,000/kW	\$1,000/kW	\$100/year	15 years
Generator	4.25 kW	\$2,550	\$2,550	\$0.15/hour	5000 hours

Component	Size	Capital	Replacement	O&M Cost	Lifetime
		Cost(\$)	Cost	(\$)	
PV Panels	0.05 – 0.4 kW	\$7,500/kW	\$7,500kW	0.00	20 years
Vision6 FM200D	200 Ah / 12 volt (bank size: 1-	\$175/battery	\$175/battery	\$2.00/year	917 kWh of throughput
Battery	8 batteries)				per battery
FDseries Wind	0.4 kW DC	\$2,500/kW	\$2,500/kW	\$10/year	15 years
Turbine				-	
Converter	0.1 – 1.5 kW	\$200/kW	\$200/kW	\$20/year	15 years

HOMER – Input Summary Report


- **HOMER Produces An Input Summary Report:**
 - Click HTML Input Summary from the File menu, or click the toolbar button:
 - HOMER will create an HTML-format report summarizing all the relevant inputs, and display it in a browser. From the browser, you can save or print the report, or copy it to the clipboard so that you can paste it into a word processor or spreadsheet program.

HOMER – Simulation Result Report

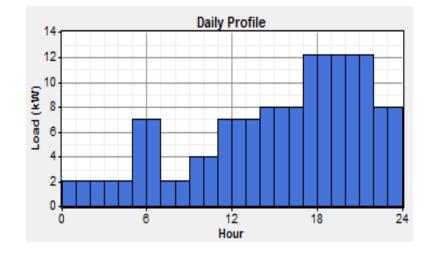
HOMER Produces A Report Summarizing The Simulation Results

Just click the HTML Report button in the Simulation Results window:

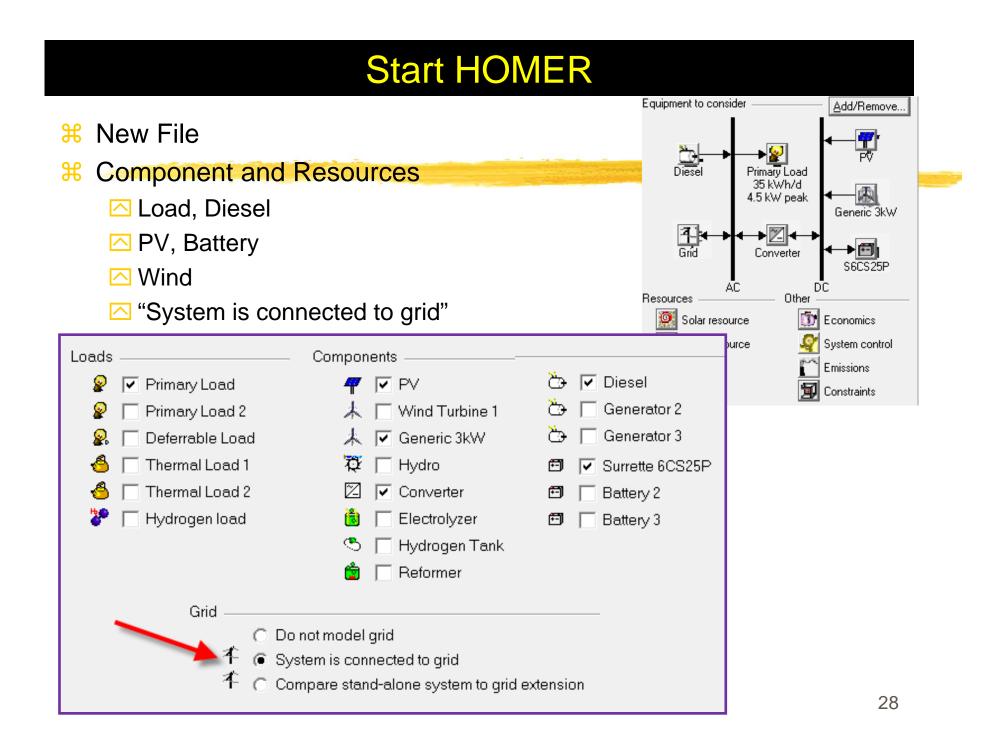
What is this message for?

PV search space may be insufficient.

Converter search space may be insufficient.


DCompleted in 3:17.

- **#** Those messages mean that:
 - you need to expand your search space to be sure you have found the cheapest system configuration.
 - If the total net present cost varied with the PV size in this way, and you simulated 10, 20, 30, and 40 kW sizes, HOMER would notice that the optimal number of turbines is 40 kW, but since that was as far as you let it look, it would give you the "search space may be insufficient" warning because 50 kW may be better yet.
 - \square It doesn't know that until you let it try 50kW and 60kW.
 - If you expanded the search space, HOMER would no longer give you that warning, since the price started to go up so you have probably identified the true least-cost point.


HOMER: Grid-Connected Micro-Power system

- Place: A commercial/retail in Seoul/Cheonan/Byungchon
- His project investigates the options for providing electricity to the commercial/small store using wind, solar, or diesel power.
- It also analyzes the impact of different assumptions about the wind resource, fuel price, and required system reliability.
- Solar Resources: Actual data via Internet
- **#** Wind Resources: Wind speed data
- Load: 35kWh/d and 4.5 kW peak

Components and Constraints

- **Components:**
 - PV: Default performance: 1kW [0, 2, 4 kW]
 - Wind Turbine: 3kW [Qty 0 1 2 3]
 - Diesel Generator: 5 kW is considered (peak load is 4.5 kW)
 - ⊠ Fuel: \$0.3/L [0.3, 0.5, 0.7]
 - ⊠ Limit Consumption: 5000 L/year
 - Batteries: Marine Battery [6V, 1167 Ah] [0 10 20 30]
 - Inverter: 10kW size. (cost: \$1250/kW) [0, 2, 4, 6, 8 kW]
 - Grid: Single rate at \$0.15/kWh; Sellback at \$0.15/kWh; Demand Charge at \$5.0/kW/month
- **#** Economics:
 - 🗠 Real interest rate: 8%
 - Project lifetime: 25 years
 - System fixed capital cost: \$6000
 - ☑ It represents balance of system and distribution system costs that cannot be allocated to a specific component.
- **#** Reliability:
 - Maximum Annual Capacity Shortage: 0% [0.0, 0.1]

Solar Resources

K Latitude, Longitude, Time Zone, Get Data of **your location**

average	elp	resource inputs to calculate the	PV arrau n	ower for each hour of	the year. Enter t	he latitude, and either	an average daily radiation	value or an
Hold the	e clearness inde	x for each month. HOMER uses n element or click Help for more i	the latitude	e value to calculate th	ne average daily	radiation from the clea	rness index and vice-versa	a.
ation	-							
atitude	37 •	0 ' North C S	outh	Time zone				T 🖌
	107			(GMT+09:00)	Japan, North	Korea, South Kore	a	-
ongitude	127 •	0' 🖲 East (C V	Vest	1,		No		
		-						
a source:	Enter m	onthly averages C Im	nport time	e series data file	Get D	ata Via Internet		
	te Enterni	entiny averages in in	ipontanie			ala via internet		
eline data								
	Clearness	Daily Radiation			Global	Horizontal Radiatio	n	
Month	Index	(kWh/m2/d)	6	1	Giobai	nonzontal Radiatio		1.0
January	0.477	(KWrh7m27d) 2.264						
February	0.467	2.204	5					
	0.497	3.966	Ð					-0.8
March	0.533	5.243	E.					
March Anril		D.Z4.3	> 4 -					¥
April	0.533	5.243	14					0.6
April May			/um/y) ug					
April May June	0.522	5.777	stion (kWh/					0.6 Jules
April May	0.522 0.491	5.777 5.681	Radiation (kWh/ 6					0.6 learness Index
April May June July	0.522 0.491 0.455	5.777 5.681 5.135	ily Radiation (kWh/m²/d) N 64					- seu
April May June July August	0.522 0.491 0.455 0.503	5.777 5.681 5.135 5.161	Daily Radiation (kWh/ N 6 6					-0.4 Sealar
April May June July August September	0.522 0.491 0.455 0.503 0.516	5.777 5.681 5.135 5.161 4.436						-0.4 -0.4 -0.2
April May June July August September October	0.522 0.491 0.455 0.503 0.516 0.530	5.777 5.681 5.135 5.161 4.436 3.524	Daily					-0.4 Searcher

29

Wind Resources

Home Strain Wind Speed Data

Wind Resource Inputs $f(v) = \frac{k}{c} \left(\frac{v}{c}\right)^{k-1} \exp\left[-\left(\frac{v}{c}\right)^k\right]$ File Edit Help HOMER uses wind resource inputs to calculate the wind turbine power each hour of the year. Enter the average wind speed for **وکر** calculations, HOMER uses scaled data; baseline data scaled up or down to the scaled annual average value. The advanced pa control how HOMER generates the 8760 hourly values from the 12 monthly values in the table. Hold the pointer over an element or click Help for more informati File View Inputs Outputs Window Help C Import time series data file Data source: (Enter monthly averages Import File. Baseline data Wind Speed Wind Resource Month (m/s)4.700 January (s/m) pee 4.900 February 4.700 March 3 4.100 April ds 2 3.600 pull 1 May June 3.400 3.400 July 0 3.800 August Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 3.500 September Other parameters Advanced parameters 3.300 October 3.700 November 0 2 Altitude (m above sea level) Weibull k 4.200 December 10 Autocorrelation factor 0.85 Anemometer height (m) 0.25 Diurnal pattern strength Variation With Height... Hour of peak windspeed 14 Annual average: 3.937 3 {3} Scaled annual average (m/s) Plot... Export... Help Cancel OK

The diurnal pattern strength simply indicates how strongly the wind speed depends on the time of day. If the wind speed tends to peak at the same time as the load, then a strong daily pattern would be a good thing. It would mean the wind blows when you need the power. If the wind speed peak was out of sync with the load peak, then a strong daily pattern would be a negative.

Diesel Resources

₭ \$0.5/L₭ Sensitivity: [\$0.3, 0.5, 0.7]/L

Diesel Inputs			· ·
File Edit Help			
Enter the fuel price. The fuel properties can only be of the Generator Inputs or Boiler Inputs window). Hold the pointer over an element name or click Help			a new fuel (click New in
Price (\$/L)	0.3	{3}	
✓ Limit consumption to (L/yr)	5000	{}	Sensitivity Values
Fuel properties Lower heating value: Density:	43.2 MJ/ 820 kg/	0.070	Variable: Diesel Price Units: \$/L
Carbon content:	88 %		Link with: <none></none>
Sulfur content:	0.33 %	Cano	Values: 1 0.300 Clear C
			6

Component: Load Input

₭ Type in hourly load [kW]

೫ [0000 − 1200]: 2, 2, 2, 2, 2, 7, 7, 2, 2, 4, 4, 7 kW

₭ [1300 - 0000]: 7, 7, 8, 8, 8, 12, 12, 12, 12, 12, 8, 8 kW

Primary Load	Inputs								
File Edit I	Help								
	e a load type (A :R replicates thi I annual averag he pointer over	s profile throu e value.	ughout the <u>j</u>	year unles	ss you defin	e different lo			
Label Prim	iary Load		Load	type: (AC C	DC	C)ata source	: 🖝 E
Baseline dat	a								
Month	January	-	14-			Daily Pr	ofile		
Day type	Weekday	-	12-					-	
			10						
Hour	Load (I		Coad (kW)		-				3
00:00 - 01:0		2.000	8 6-	1	8 119				43
01:00 - 02:0	and the second se	2.000	4	11	6 G				
02:00 - 03:0		2.000	2						
03:00 - 04:0	0.00	2.000							
04:00 - 05:0		2.000	ó		6	12 Hou		18	24
05:00 - 06:0		7.000				ноц	r i		
06:00 - 07:0	The second se	2.000	24-		1	1	-	r r	Sea
07:00 - 08:0		2.000	-	-					-
08:00 - 09:0		4.000	18-		T	T	— T —	- T -	
09:00 - 10:0	1.111		(M)						
10:00 - 11:0		4.000	(MM) 12						
11:00 - 12:0	0	7.000	Lo						
12:00 - 13:0	C211	7.000	6						
13:00 - 14:0		8.000			. and				and a second
14:00 - 15:0		8.000		Jan	Feb	Mar	Apr	May	Jun

32

Component: Diesel Input

₭₩ generator

Sensitivity: [0, 2, 4] kW

E	installation to serve t	fuel, and en n costs, and hermal load. ,	that the O&M cost i	s expressed in le optimal syste	dollars per opera em, HOMER will o	f maintenance (D&M) value in ting hour. Enter a nonzero he consider each generator size	at recovery ratio if he	e that the capital cost includes at will be recovered from this generator er table.
st	Fuel	Schedul	e Emissions					
Co	osts —	P 0		11 N		— Sizes to conside	r	Cost Curve
1000	Size (kW) 8.000	Capital (\$) 6500	Replacement (\$) 5500	0&M (\$/hr) 0.200		Size (kW) 0.000	e	
Pr	operties Descript		.}	{}	{}			2 4 6 8 Size (kW)
				1)00	C DC			- Capital - Replacement
	Abbrevi			45000				
	Lifetime	(operating	hours)	15000	<i>{}</i>			
	Minimun	n load ratio	o (%)	30 _	{_}}			
							Help	Cancel OK 33

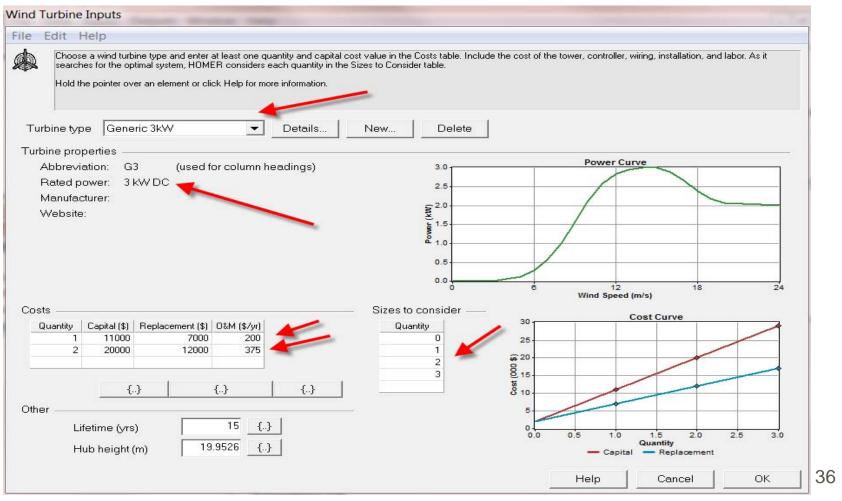
Component: Grid Input

Click Add to add as many rates as necessary. Select a rate and Hold the pointer over an element or click Help for more informati							
s Emissions Advanced Forecasting	Rate Properties						
Real time prices	Enter a name for this rate period, and the corresponding power price, sellback rate, and demand rate. Hold the pointer over an element or click Help for more information.						
ep 1: Define and select a rate Rate Price SellIback Demand	Label Rate 1 Color Rate 1						
(\$/kWh) (\$/kWh) (\$/kW/mo) tate 1 0.150 0.150 5.000	Grid power price (\$/kWh) 0.15						
	Sellback rate (\$/kWh) 0.15 {} Demand rate (\$/kW/month) 5 {}						
Add Remove Edit	This rate applies: Months Days Hours						
ep 2: Select a time period All Week Weekdays Weekends	Jan-Dec All week 00:00-24:00						
ep 3: Click on the chart to indicate when the selected rate applies.	Help Cancel OK						
☐ Net metering							
 Net purchases calculated monthly Net purchases calculated annually 	24:00 lon Eab Max Apr Max Ive Ive Con Date New Date						
	^{24:00} Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec						

Component: PV Input

₩1kW, \$6900, \$6900, \$0/yr

∺[0, 2, 4] kW for sensitivity analysis

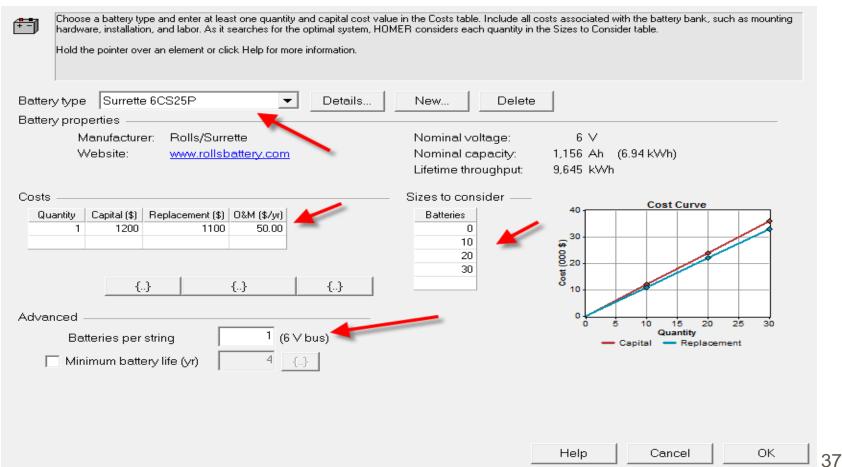

e Edit Help Enter at least one size and cat hardware, and installation. As	pital cost value in the Costs t it searches for the optimal sys	table. Include all costs associated with the PV (photovoltaic) system, inc stem, HOMER considers each PV array capacity in the Sizes to Conside	luding modules, mounting r table.
Note that by default, HOMER Hold the pointer over an eleme		o the latitude from the Solar Resource Inputs window. ormation.	
Costs 🖌 🖌		Sizes to consider 🥢	10000000
Size (kW) Capital (\$) Replacen		Size (kW) 30	Cost Curve
1.000 6900	6900 0	25 2.000 \$	
		4.000 8 15 8 10 10	
{.}	{.}}	{}	
roperties			
Output current CAC	C DC	0 1 — Capit	2 3 4 Size (kW) tal — Replacement
Lifetime (years)	25 {}	Advanced	
Derating factor (%)	90 {}	Tracking system No Tracking	•
Slope (degrees)	37 {}	Consider effect of temperature	
Azimuth (degrees W of S)	0 {}	Temperature coeff. of power (%/*C)	-0.5 {}
Ground reflectance (%)	20 {}	Nominal operating cell temp. (°C)	47 {}
2000 -		Efficiency at std. test conditions (%)	13 []

Component: Wind Turbine Input

🔀 Generic 3kW DC

X Quantity [0,1, 2, 3] for sensitivity analysis

₭ Cost: \$11000, \$7000, \$200/yr



Component: Battery Input

1 52 32

- Rolls/Surrette 1156 Ah 6V
- 🔀 Quantity [0, 10, 20, 30] for Sensitivity

₭ 1 per string

Component: Converter Input

10kW H

- Cost: \$12500, \$12500, \$100/yr H
- [0, 2, 4, 6, 8kW] for sensitivity analysis \mathfrak{R}
- **Inversion Efficiency 90%** H
- **Rectification Efficiency 85%** H

Edit Help A converter is required for systems in which DC components serve an AC I both. Enter at least one size and capital cost value in the Costs table. Include all the optimal system, HOMER considers each converter capacity in the Size inverter capacity. Hold the pointer over an element or click Help for more information.	I costs associated with the conve	rter, such as hardware and labor. As it searches for
Costs	Sizes to consider —	Continue
Size (kW) Capital (\$) Replacement (\$) 0&M (\$/yr)	Size (kW)	14 Cost Curve
10.000 12500 12500 100	0.000	
	4.000	8 8
	6.000	
		2
verter inputs	-	
Lifetime (years) 20 {}	0	Size (kW) Capital Replacement
Efficiency (%) 90 {}		
Inverter can operate simultaneously with an AC generator		
Rectifier inputs		
Capacity relative to inverter (%) 100 {}		
Efficiency (%) 85 {}		
		Help Cancel OK

Other: Economics

- ₭ Real annual interest: 8%
- **#** Project Lifetime: 25 years
- ₭ System fixed cost: \$6000
 - It represents balance of system and distribution system costs that cannot be allocated to a specific component.

Econom	nic Inputs			
File E	dit Help			
ŝ	HOMER applies the economic inputs to each system it si present cost. Hold the pointer over an element name or click Help for r		ite the sy	vstem's net
	Annual real interest rate (%)	8	{}	*
	Project lifetime (years)	25	<i>{}</i>	-
	System fixed capital cost (\$)	6000	{}	¥
	System fixed O&M cost (\$/yr)	0	{}	
	Capacity shortage penalty (\$/kWh)	0	{}	
	Help	Cance		ОК

Other: System Control

- Simulation Time Step: 1 hr (60 min)
- **#** Dispatch Strategies: Ioad following cycle charging Charge state set point: 80% System Control Inputs File Edit Held The system control inputs define how HOMER models the operation of the battery bank and generators. The dispatch strategy S determines how the system charges the battery bank. Hold the pointer over an element name or click Help for more information. Simulation 60 {..} Simulation time step (minutes) Dispatch strategy Load following Vcle charging 80 {..} Apply setpoint state of charge (%) Generator control Allow systems with multiple generators Allow multiple generators to operate simultaneously
 - Allow systems with generator capacity less than peak load

Other: Constraints Input

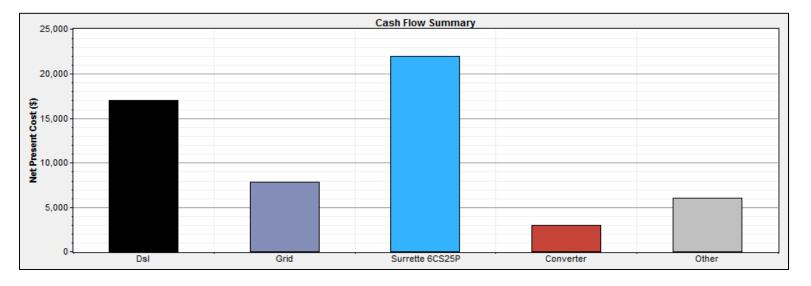
- Max annual capacity storage: 0% [0.0, 0.1] for sensitivity analysis
- ∺ Operating Reserve: 10% of hourly load

Constrair	nts						
File Ec	dit Help						
P	Constraints are conditions that systems must meet to be feasible. Infea reserve provides a margin to account for intra-hour deviation from the I margin for each hour based on the operating reserve inputs. Hold the pointer over an element name or click Help for more informati	nourly average of the lo					abula (i Gra
		× 🐳	Sensitivity Val	ues			-
	Maximum annual capacity shortage (%)	0 {2} 0 {.}	Variable: Units:	Maximun %	n Annual I	Capacity S	Shortage
	Operating reserve		Link with:	<none></none>			-
	As percent of load		Values:	1	0.0		Clear
	Hourly load (%) 🔭 📃	10 {}		2	0.0		
	Annual peak load (%)	0 {}		3 4			
	As percent of renewable output			5			
	Solar power output (%)	25 {}		7			
	Wind power output (%)	50 {}		8 9			

Simulation

Calculate: Optimization Result

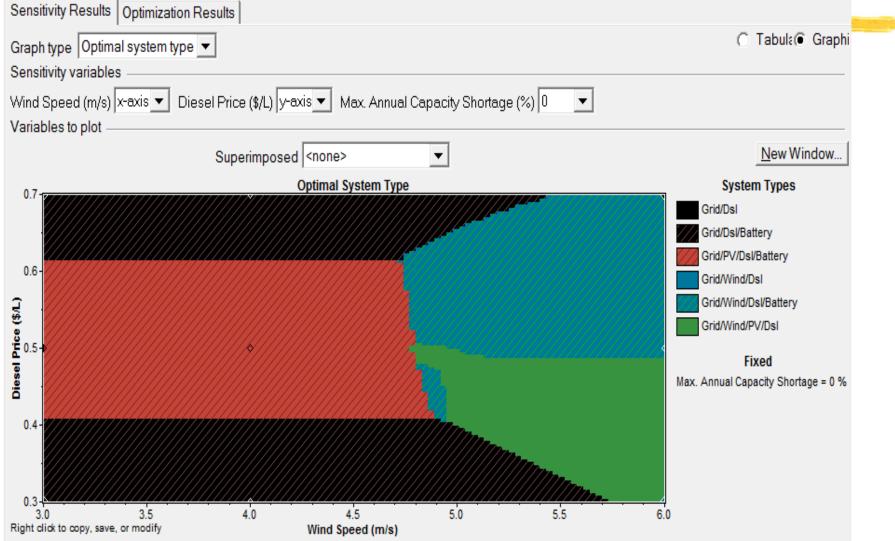
Categorized


Sensitivity Results Op	timizatio	on Res	ults											
Sensitivity variables -														
Wind Speed (m/s) 3	-	Diesel	Price (\$/L) 0.3	-	Max. A	nnual Capac	ity Shortage	(%) 0	•				
Double click on a syste	m belov	v for sin	nulation r	esults.						Categor	iz 🔿 🕻	Overal _	Export	Details
			S6CS2				Initial	Operating	Total			Capacity		Dsl
)	(kW)		(kW)	Strgy	(kW)	Capital	Cost (\$/yr)	NPC	[\$/kW	Frac.	Shorta	(L)	(hrs)
千		2	10	2	CC	1	\$ 22,125	3,152	\$ 55,776	0.409	0.00	0.00	2,904	4,400
177 👌 🖻 🛛 🛛 🏅	2	2	10	2	CC	1	\$ 35,925	2,670	\$ 64,428	0.472	0.22	0.00	2,031	3,077
作	1	2	10	2	CC	1	\$ 33,125	3,401	\$ 69,434	0.509	0.06	0.00	2,646	4,009
本7 本で回図 2	2 1	2	10	2	CC	1	\$ 46,925	2,927	\$ 78,175	0.573	0.28	0.00	1,796	2,721

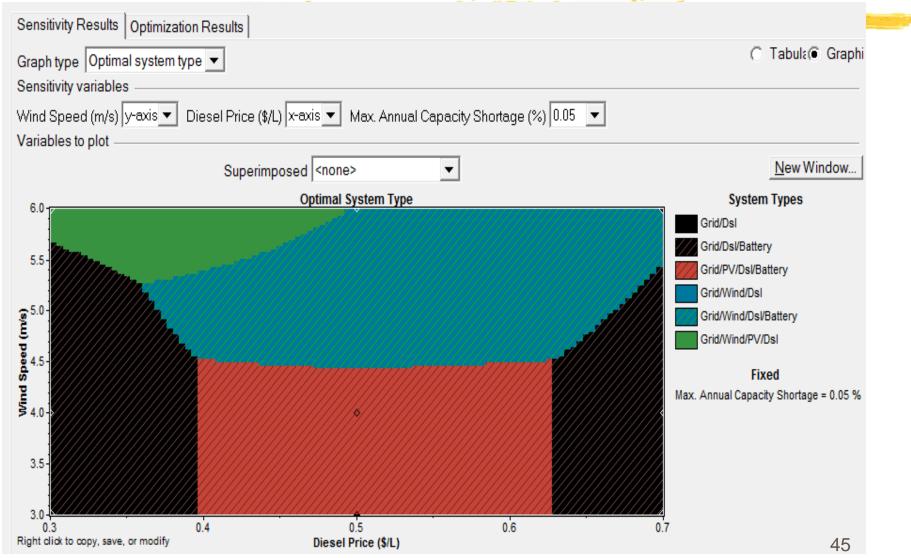
Overall

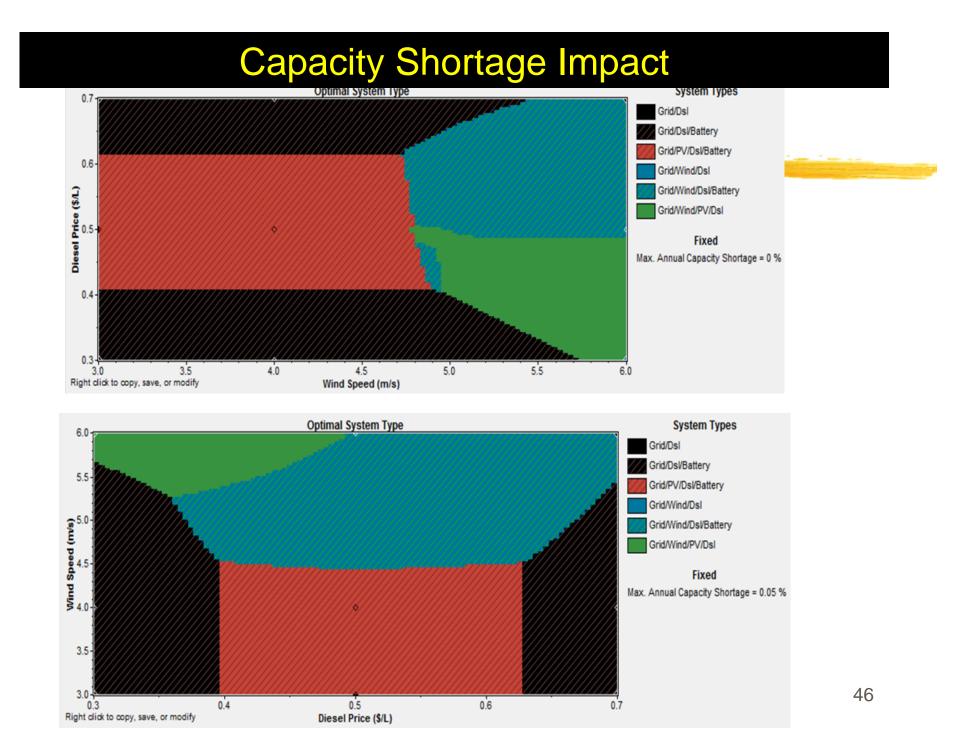
Sens	itivity Results	, Optir	nizatio	on Res	ults											
Sens	itivity variable	es —														
Wind Speed (m/s) 3 ▼ Diesel Price (\$/L) 0.3 ▼ Max. Annual Capacity Shortage (%) 0 ▼																
Doub	le click on a s	system	below	v for sin	nulation r	esults.					0.0	Categor	iz 🖲 🕻	Overal	xport	Details
 	′≴≿⊡⊠	PV	G3		S6CS2			Grid	Initial	Operating	Total	COE		Capacity		Dsl
		(kW)		(kW)			Strgy	(kW)	Capital	Cost (\$/yr)		1.		Shortage		(hrs)
「不	è 🖻 🛛			2	10	2	CC	1	\$ 22,125	3,152	\$ 55,776	0.409	0.00	0.00	2,904	4,400
イ	è 🖻 🖂			2	10	4	CC	1	\$ 24,625	3,204	\$ 58,824	0.431	0.00	0.00	2,921	4,426
木ዋ	′ 👌 🖻 🖾	2		2	10	2	CC	1	\$ 35,925	2,670	\$ 64,428	0.472	0.22	0.00	2,031	3,077
「本」	è 🖻 🖂			2	10	6	CC	1	\$27,125	3,613	\$65,693	0.482	0.00	0.00	4,660	7,061
本甲	′ ေညာံများစားစား	2		4	10	2	LF	1	\$ 37,550	2,917	\$ 68,686	0.504	0.16	0.00	4,883	3,699
1 ⊀	è 🖻 🖂			2	10	8	CC	1	\$ 29,625	3,693	\$ 69,048	0.506	0.00	0.00	4,929	7,468
オ	\$\$````` ■ 🖾		1	2	10	2	CC	1	\$ 33,125	3,401	\$ 69,434	0.509	0.06	0.00	2,646	4,009
本ዋ	′ ေဲမာ 🖾	2		2	10	4	CC	1	\$ 38,425	3,107	\$ 71,592	0.525	0.17	0.00	3,708	5,618
木中	′ 👌 🖻 🖾	2		4	10	4	LF	1	\$ 40,050	3,002	\$ 72,101	0.529	0.16	0.00	4,723	3,578
ーズ	🎄 🏷 🖻 🕅		1	2	10	4	CC	1	\$ 35.625	3.450	\$ 72.454	0.531	0.06	0.00	2.660	4.031

Result: Electrical & Cash Flow

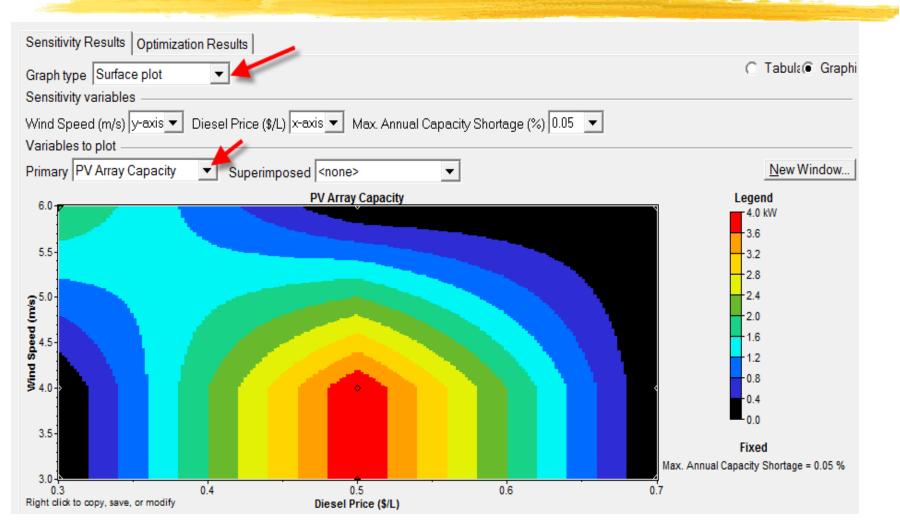


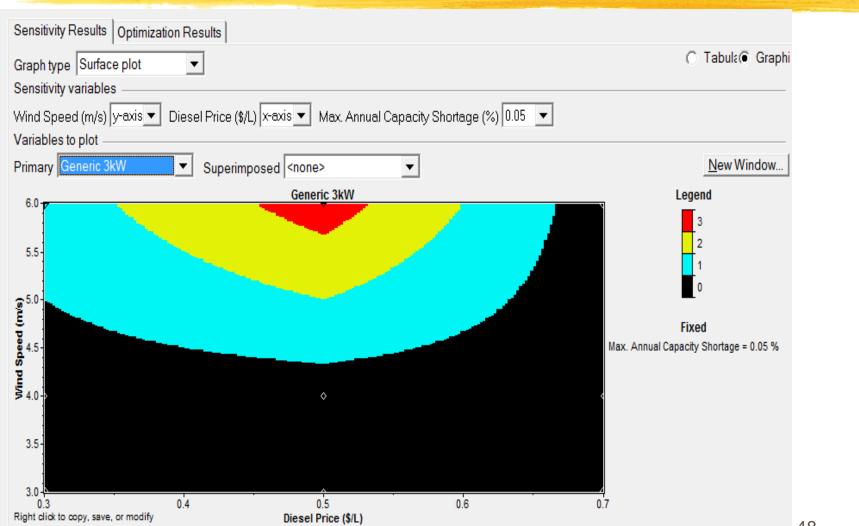
43


Sensitivity Analysis

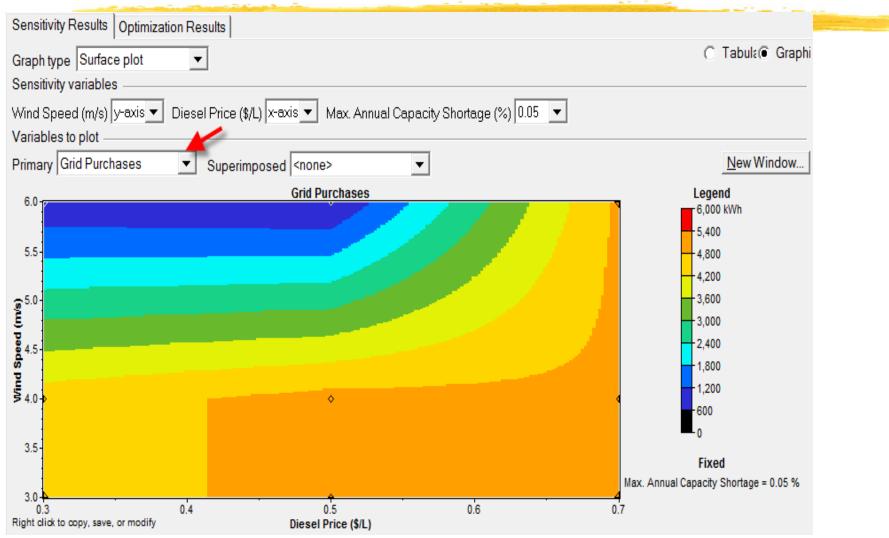

₭ Wind Speed (x) vs. Diesel Price with 0% capacity shortage

Sensitivity Analysis


Biesel Price(x) vs. Wind Speed (y) with 0.05% capacity shortage


Surface Plot View

PV Array Capacity


Surface Plot View

Wind Power

Surface Plot View

Grid Purchase

What we have learned so far

#HOMER

Editing an example code

 Resources and components
 Simulation ("calculate") and Optimization
 Result interpretation

 Creating a design of code

 For your system
 Resources and components
 Simulation and optimization

 We are ready to do something more our own !!
 Team Project

Team Project Demonstration/Presentation

Team Design Project

- Besign a Hybrid Energy System (Grid may be connected)
- Site: Work (School or Company or store) team's consensus

Hobjective: Find the optimum system with sensitivity analysis	HOUR 0000-0100 0100-0200	[kW] 10 10
Components: Grid (optional), Converter, Wind Turbine, PV panel, Fuel Cells, Electrolyzer, and Hydrogen Tank	0200-0300 0300-0400 0400-0500 0500-0600 0600-0700	10 10 10 20 20
 Project Lifetime: 20 years Fixed Cost: \$10,000 	0700-0800 0800-0900 0900-1000 1000-1100	150 140 140 140
 ₭ Load Profile → M You may use your own load profile obtained from your work 	1100-1200 1200-1300 1300-1400 1400-1500 1500-1600 1600-1700	140 100 140 140 140 100
 You need to provide resource data on your work location Solar Radiation {provide also sensitivity} Wind Speed {sensitivity} 	1700-1800 1800-1900 1900-2000 2000-2100 2100-2200 2200-2300 2300-2400	100 30 30 30 20 10 10

Suggested Component Data – Wind and PV

*****Wind Turbine

Furhlander 30

⊠Size: 30 kW

⊠Lifetime: 20 years

⊠Quantity: 10: [0, 5, 10]

Capital Cost: \$7,800 [for 1 unit]

Replacement Cost: 10% of the Capital Cost

⊠O&M Cost/Year: 5% of the Capital cost

₩PV Module

⊠Size: 200kW: [0,100,200,300] kW

⊠Derating Factor: 90%

☑Lifetime: 20 years

Capital Cost: \$5000/kW

Replacement Cost: 10% of Capital Cost

⊠O&M: 1% of Capital Cost

Suggested Component Data – Hydrogen

- ∺ Electrolyzer
 - Size: 100kW: [0, 50, 100] kW
 - Lifetime: 20 years
 - 🔼 Capital Cost: \$3000/kW
 - Replacement cost: 50% of Capital Cost
 - O&M Cost/Year: 5% of Capital cost
- ₭ Fuel Cell
 - Size: 200kW: [0, 100, 200, 300] kW
 - Lifetime: 30000 operating hours
 - Capital Cost: \$5000/kW (or \$500/kW)
 - Replacement Cost: \$0
 - △ O&M cost: \$0.1/hour
- Hydrogen Tank
 - Size: 2000 kg: [0, 1000, 2000, 3000]kg
 - △ Lifetime: 25 years
 - 🔼 Capital Cost: \$500/kg
 - Replacement Cost: 10% of Capital Cost
 - O&M Cost/year: 0.5% of the Capital Cost

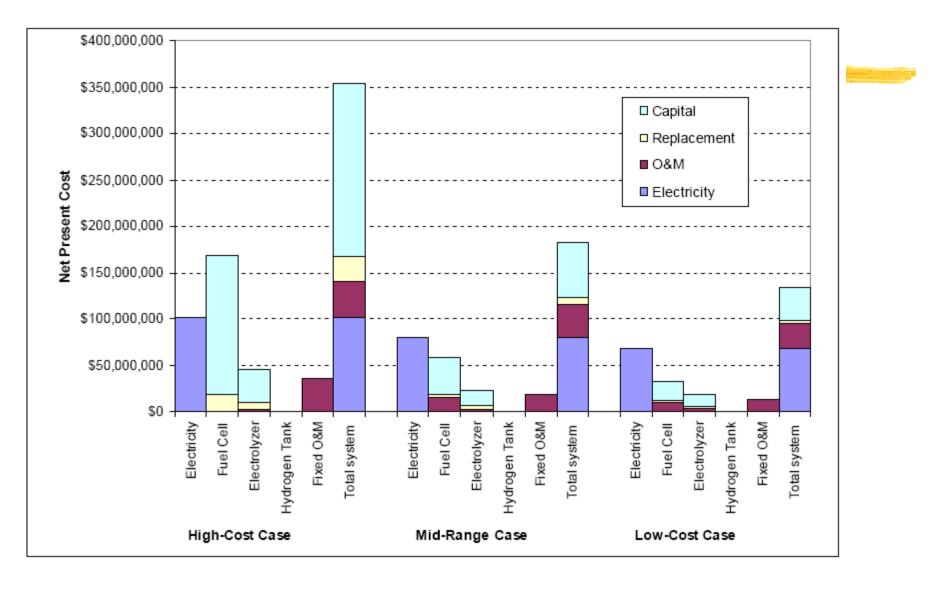
Side Bar- Hydrogen Systems

- Electrolyzer system converts electricity into hydrogen by electrolyzing water
- Hydrogen is stored in steel tanks or geological cavern
- **#** Reconverted to Electricity using 2 methods:
 - Polymer Electrolyte Membrane (PEM) fuel cell
 - Hydrogen Expansion Combustion Turbine

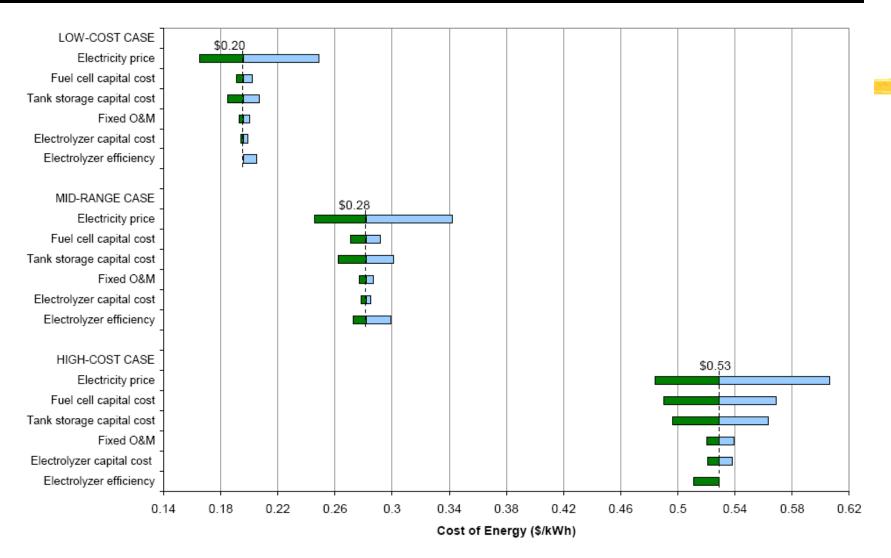
Side Bar – Fuel Cell

#Fuel Cell

System Component	High-Cost Case Values	Mid-Range Case Values	Low-Cost Case Values
Fuel cell system installed capital cost (\$2008)	\$3,000/kW	\$813/kW	\$434/kW
Stack replacement frequency/cost	13 yr¹/30% of initial capital cost	15 yr/30% of initial capital cost	26 yr¹/30% of initial capital cost
O&M costs	\$50/kW-yr ²	\$27/kW-yr	\$20/kW-yr ²
Fuel cell life	13 yr (20,000- hour operation)	15 yr (24,000- hour operation)	26 yr (40,000- hour operation)
Fuel cell system efficiency (LHV)	47%	53% ³	58% ⁴

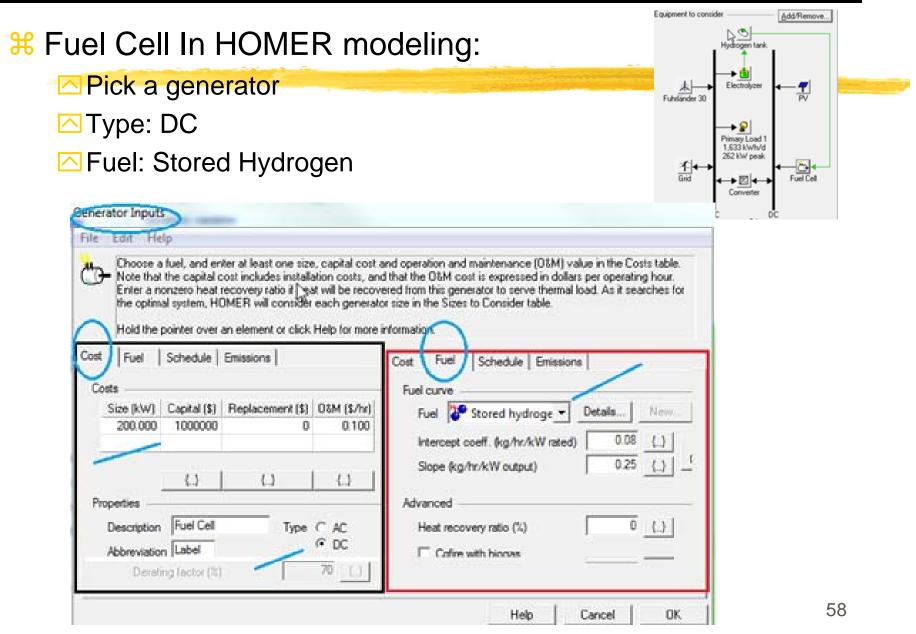

¹DOE (2007), Chapter 3.4; 20,000 hours for stationary PEM reformate system fuel cells 5–250 kW has been demonstrated. The goal for 2011 is, "By 2011, develop a distributed generation PEM fuel cell system operating on natural gas or LPG that achieves 40% electrical efficiency and 40,000 hours durability at \$750/kW." Validated by 2014. Twenty thousand hours (13 years) was used for the high-cost value, and 40,000 hours (26 years) was used for the low-cost value.

years) was used for the low-cost value. ²Values are from Lipman et al. (2004).


³Current technology value for stack efficiency is approximately 55% (O'Hayre et al. 2006). Value is mid-way between the high and low estimates.

⁴Assumed stack efficiency of 60% (MYPP 2010 target for direct hydrogen fuel cells for transportation) with 2% conversion losses for integrated system.

Side Bar - Hydrogen Fuel System Cost



Side Bar - Nominal \$/kWh Comparison

Nominal cost values shown may not line up precisely with x-axis values due to rounding.

Fuel Cell Modeling

Suggested Component Data – Converter

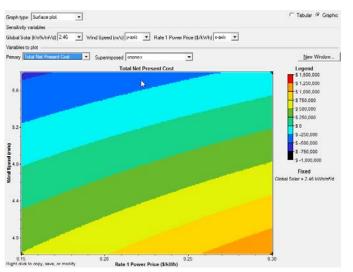
Converter

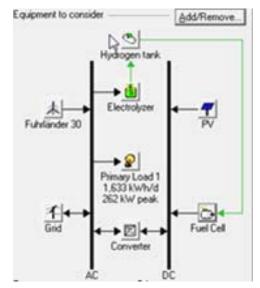
- Size: 200kW: [0, 100, 200, 300]kW
- ☐ Lifetime: 20 years
- Efficiency: 90%
- Capital Cost: \$1000/kW
- Replacement Cost: 30% of Capital Cost
- O&M Cost/Year: 10% of Capital Cost

∺ Grid (Optional)

- Single rate
- △ Price (\$/kWh): \$0.15 :
 - Sellback (\$/kWh): \$0.15
- △ Demand: \$0

Purchase Capacity: 300kW


Sellback Capacity: 200kW



Analysis Points and Team Presentation

#Analysis Points:

- Find the Solar Radiation, and give Sensitivity values
- Find the Wind Speed, and give sensitivity values
- Calculate and Check the Optimization results
- Check the Sensitivity Results
- Find the optimum results
- Prepare Slides for team presentation (last day)
 - System Site, Location, etc (+ Real components and vendor info)
- Also run the HOMER in the presentation

