
Prepared by

Derrick Anang

For

EECE456 Embedded Systems Design Lab
Instructor: Dr. Charles Kim

Electrical and Computer Engineering
Howard University

Class Web: www.mwftr.com/emblab.html

Ethernet Access and Remote Control
with Intel Galileo

1

∗ Intel® Galileo Gen2 Board
A microcontroller board based on the Intel® Quark SoC X1000
application processor (a 32-bit Intel® Pentium brand system on
a chip). The 32-bit processor can run at up to 400MHz and has
a 512KB SRAM built in. This board functions as a fully featured,
cost-effective development platform which complements with
the Arduino software to provide an advanced compute
functionality. It basically serves as an interface between the
Arduino Software (IDE) and the Grove system components.
∗ It comes with an on-board 10/100 Mb/s Ethernet connector

port.
∗ This on-board Ethernet port is accessible via Linux and

Arduino IDE using the Ethernet Library.

INTEL® GALILEO

2

HARDWARE COMPONENTS
∗ Intel® Galileo Gen 2 Board
∗ Micro-SD Card
∗ USB to 6-pin FTDI Serial Cable
∗ Ethernet Cable
∗ Grove Starter Kit
∗ An Ethernet Switch or Wi-Fi Router with a free Ethernet port

(connects Galileo board to the Local Access Network (LAN)
being used)

∗ Micro B to Type A USB Cable
∗ 12 VDC, 1.5A Power Supply

GETTING STARTED

3

∗ Arduino Integrated Development Environment (IDE) for
Galileo

∗ Intel XDK IoT Edition (Download link: http://software.intel.com/en-
us/html5/xdk-iot)

∗ Terminal Emulator e.g. PuTTy (http://www.putty.org/) or
Bonjour Browser for Mac OS, link:
(http://www.tildesoft.com/files/BonjourBrowser.dmg)

∗ FTDI Driver Installer for Windows, link:
(http://www.ftdichip.com/Drivers/D2XX.htm)

∗ Yocto Boot Image (http://iotdk.intel.com/images/iot-devkit-
latest-mmcblkp0.direct.bz2)

∗ WinRAR or 7-Zip Extractor (http://www.7-zip.org/)
∗ Win32 Disk Imager (http://sourceforge.net/projects/win32diskimager/)
∗ Bonjour

(http://support.apple.com/downloads/DL999/en_US/BonjourPSSetup.exe)
4

SOFTWARE COMPONENTS

WINDOWS
∗ Download the compressed Yocto Boot Image from the link given under software

components.
∗ Using WinRAR or 7-Zip Extractor, extract the components of the boot image to a

source folder. In the image below, WinRAR Extractor is used. The extract option
(in the red box) is used to extract files to a source folder.

CONNECTING GALILEO BOARD TO COMPUTER

5

∗ Insert the micro-SD Card into the appropriate card slot of
your Windows System.

∗ Download the Win32 Disk Imager utility and install it as an
Administrator. After a successful installation, run the
Win32 Disk Imager as an Administrator.

∗ Ensure that you have selected the correct Device Drive
corresponding to your inserted micro-SD card for writing.

∗ Under “Image File”, open source folder location where
boot image is stored and select the extracted boot image.

∗ After, click on “Write” to write boot image to micro-SD
card.

∗ Wait thoroughly for write process to be complete before
exiting.

CONNECTING GALILEO BOARD TO COMPUTER

6

7

∗ Make sure the Galileo Board is unplugged.
∗ Place the prepared micro-SD Card in the micro-SD card slot on the Galileo Board.
∗ Connect the correspondent FTDI Serial Cable in the appropriate port on the board the

connect the other side to the USB port on your computer. Note: the lines on the FTDI
cable are color coded. Black is for Ground so make sure it corresponds to the Ground Pin
on the FTDI port on the board.

CONNECTING GALILEO BOARD TO COMPUTER

8

∗ Connect the Ethernet Cable to the Ethernet connector port
on your Galileo Board and connect the other side to your
LAN such as a router port.

∗ Connect your computer to your LAN for example using
another router port.

CONNECTING GALILEO BOARD TO COMPUTER

9

∗ Notice in the above image that both computer and
Galileo share the same LAN subnet which comes from
the red Ethernet cable to the router box

∗ Connect the power cable to the Galileo Board and
connect to electrical power to start it up.

∗ The on-board LED labeled ‘SD’ should blink which
indicates there is activity with the micro-SD card. Wait
for LED to stop blinking.

CONNECTING GALILEO BOARD TO COMPUTER

10

∗ Full setup should look like this:

CONNECTING GALILEO BOARD TO COMPUTER

11

∗ First, you need to find which serial port your Windows system recognizes as
connected to the Galileo board.

∗ Open ‘Start’ then click on ‘Devices and Printers’. A USB Serial entry displayed by
a CPU-like icon appears, double click on it to see the ‘COM’ number assigned to
the board.

DISCOVERING THE BOARD’S IP ADDRESS

12

∗ Run ‘PuTTy’ software to open a serial connection with
the board.

∗ Set the following configurations:
Under ‘Category’, choose ‘Session’ and look for the various
options under ‘Connection Type’
Choose ‘Serial’
Under ‘Serial Line’, type in the ‘COM’ number assigned to board
e.g. COM6
Under ‘Speed’ type 115200
Under ‘Category’ again, go down and choose ‘Serial’ which can
be found under ‘SSH’ sub-category.
Confirm the ‘COM’ number under ‘Serial line to connect to’.
Speed = 115200, Data bits = 8 , Stop Bits = 1, Parity = 1
Then click on ‘Open’.

DISCOVERING THE BOARD’S IP ADDRESS

13

14

15

∗ If nothing appears when you click ‘Open’, hit the
enter button on your keyboard.

∗ Type in ‘root’ as the username. The password is
empty so leave it.

∗ Using the command ‘ip a’, identify the IP address
being used by the board. It should be listed as ‘inet’
inside the second listed entry.

DISCOVERING THE BOARD’S IP ADDRESS

16

17

∗ Unplug the power source from the Galileo board.
∗ While the board is off, remove the micro-SD card from the

micro-SD socket.
∗ Also, unplug the Serial FTDI cable from Galileo Board while

leaving the Ethernet cable plugged in.
∗ Connect the Micro B to Type A USB cable to the Galileo

Board and then to a USB port on your computer.
∗ Plug in the power source to turn the Galileo board back on.
∗ Run the Arduino IDE software. Ensure the ‘Port’ and

‘Board’ selections are correct.
∗ Open an Ethernet sketch such as the one below.

ETHERNET

18

#include <SPI.h>
#include <Ethernet.h>
// MAC address for the Galileo (there’s a sticker on the Ethernet connector)
byte mac[] = { 0x??, 0x??, 0x??, 0x??, 0x??, 0x?? };
//the IP address for the Galileo: (will be used if there’s no DHCP server on your network)
byte ip[] = { ???, ???, ???, ??? };

void setup() {
delay(5000);
Serial.println("Attempting to configure Ethernet using DHCP");
if (Ethernet.begin(mac) == 0) {

Serial.begin(9600);
Serial.println("Failed to configure Ethernet using DHCP");
Serial.println("Attempting to configure Ethernet using Static IP");
Ethernet.begin(mac, ip);
Serial.println(" Please check ifconfig");

} else
Serial.println("Sounds good");

system("ifup eth0"); // load Ethernet interface!
}
void loop () {}

19

∗ In above sketch, it can be seen that the columns for
entering the IP and MAC addresses are represented
with yellow question marks.

∗ Let us first begin with the MAC address. The MAC
address for your Galileo board is printed on a sticker
that’s on the Ethernet connector on the board. It’s a
sequence of 12 digits. It should read like this ‘MAC:
############’.

∗ In the above code, the MAC address is specified as a
series of hex formatted numbers. Just place the
numbers after each “0x” in the code with two
numbers from your MAC address.

ENTERING IP AND MAC ADDRESSES

20

21

∗ In the above image, the MAC address can be seen on the sticker
placed on the Ethernet connector.

∗ MAC address is 984FEE016FAF.
∗ Therefore, in the sketch code it will be represented like this:

byte mac[] = { 0x98, 0x4F, 0xEE, 0x01, 0x6F, 0xAF};

∗ After the MAC address is configured, you have to configure the IP
address using the address you found earlier being used by the
board.

∗ With that address, the IP address input should look like this:
byte ip [] = { 192, 168, 70, 138}; or
IPAddress ip(192, 168, 70, 138);

∗ Your sketch code is then ready to upload.
∗ Compile and upload the code to the board.
∗ Using a web browser on your computer, open the assigned IP

address using the raw figures without all the ‘www...com’
business.

∗ Browser should display whatever content you have in the sketch
code.

22

∗ Unplug power source from Galileo board.
∗ While off, disconnect the Micro B to Type A USB cable from the

board.
∗ Insert the micro-SD card with the boot image back into micro-SD

port.
∗ Plug in the power source to turn the Galileo board back on.
∗ Run the ‘Intel XDK IoT Edition’ software.
∗ Click on ‘Start A New Project’.
∗ Under ‘Internet of Things Embedded Application’, click on

‘Templates’ then choose ‘Blank Template’. After, click ‘Continue’.
∗ Choose directory to save your project then assign a project name.
∗ A pop-up window appears offering to give you a tour. Simply

choose ‘No, thanks’.

CONNECTING USING INTEL XDK IoT EDITION

23

24

25

26

∗ A window like the one below should appear.
∗ After the board is finished booting, it will be running the Intel XDK app daemon.
∗ Click on the IoT device dropdown. If you don’t see an IP address and a port after

a separator, click on ‘Rescan for devices’ and the IDE will try to find the device
on the network.

27

∗ If the device is still not listed check to make sure that
the Galileo board is on the same subnet network.

∗ Also, download and install Bonjour from the link given
under software components. Follow the instructions
to automatically detect the compatible devices
connected on the LAN.

∗ If the IDE identifies the device, select it and connect
IDE with device. The default port number is 58888.
Type in ‘root’ as username. Leave the password
column blank then connect with the device.

∗ You should be alerted when the IDE is done
connecting with the device. The board is then ready
to communicate with the IDE

28

29

∗ When device is connected, look for ‘Manage your daemon or IoT device’
icon indicated with the number ‘1’ in below image. Click on ‘Sync PC time
with clock on target device’.

∗ Also under ‘Manage your daemon/IoT device’, activate the following
checkboxes below Build Settings.

Clean node_modules before building.
Run npm install directly on IoT device (requires internet connection).

∗ Now under the main code area with the inscription ‘Type Node.js here’,
copy and paste below project.

∗ Once the code is uploaded, go back to the IoT device dropdown panel.
∗ Click on the ‘Install/Build’ icon (Number ‘2’ in image below) and wait for

it to finish executing.
∗ Ignore the ‘require is not defined’, ‘console is not defined’ and

‘setTimeout is not defined’ JSHint problems.
∗ Now to the left is the ‘Upload’ (Number ‘3’ in image below) icon. Click

on it to upload the project to the device.
∗ After it is uploaded, click on the ‘Run’ (Number ‘4’ in image below) icon

to run the uploaded project.
∗ The onboard LED should blink and also voltage measurements from

Analog Pin A1 should display in the activity space under the IoT device
dropdown panel.

∗ The IDE is then communicating with the board.
30

31

1. // Require the MRAA library
2. var mraa = require('mraa');
3. // Print the MRAA library version to the IDE console
4. console.log('MRAA Library Version: ' + mraa.getVersion());
5. // The Galileo Gen 2 onboard led is mapped to pin #13
6. var onboardLed = new mraa.Gpio(13);
7. // Set the GPIO direction to output (I want to turn on and off the LED)
8. onboardLed.dir(mraa.DIR_OUT);
9. // Hold the LED state
10. var ledState = false;
11. // Analog input pin #1 (A1)
12. var analogPin1 = new mraa.Aio(1);
13. // Call the periodict activity function
14. periodicActivity();
15.
16. function periodicActivity()
17. {
18. // Invert the LED state
19. ledState = !ledState;
20. // Turn on the LED by writing a '1' (high) or
21. // Turn off the LED by writing a '0' based on ledState
22. onboardLed.write(ledState?1:0);
23. // Read the value from the analog pin (up to 4096)
24. var analogValue = analogPin1.read();
25. // Convert the retrieved value to the appropriate voltage value
26. var measuredVoltage = analogValue / 4096 * 5;
27. // Write the measured voltage to the IDE console
28. console.log("Measured voltage (in Volts): " + measuredVoltage);
29. // Call periodicActivity again after 1000 milliseconds (1 second)
30. setTimeout(periodicActivity,1000);
31. }

32

