
Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

89

Chapter 6. LCD Display and IR Remote Control Applications

This chapter extends the (software enabled) serial communication of Chapter 5 into the
applications of data display and IR remote controller which have many additional applications
for projects and other designs.

1. LCD Displaying

Alphanumeric LCD display is very popular for many applications because we can quickly and
easily display a result of calculation or measurement, or data for debugging purpose. Of course,
as we discussed before, a computer monitor is an excellent tool for the same purpose, but when
we build an embedded computing system, much smaller LCD is always useful. There also are
graphic LCDs are available.

A LCD is different from a LCD module. A LCD is just a medium to display characters or
graphics, it itself also cannot display. A LCD module contains, in addition to the display
medium, an interface controller/driver for the LCD. A LCD controller/driver displays
alphanumerics and symbols. The most popular LCD controller/driver is the Hitachi 44780 based
LCD controller chip. A single HD44780 can display up to one 8-character line or two 8-
character lines. It can be configured to drive a dot-matrix liquid crystal display
under the control of a 4- or 8-bit microprocessor.

LCD Controller/Driver HD44780
Internally HD44780 has a 80x8-bit display data (DD) RAM for maximum 80 characters, and
9,920-bit character generator(CG) ROM for a total of 240 character fonts (208 character fonts
with 5x8 dot size and 32 character fonts with 5x10 dot size), and a 64x8-bit character generator
RAM for 8 character fonts (5x8 dot) and 4 character fonts (5x10 dot). It also covers Wide range
of instruction functions, "HD44780 Standard Control and Command Code," such as display
clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, and display
shift. It contains a reset circuit that initializes the controller/driver after power on.

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its
extended capacity is 80x8 bits, or 80 characters. The area in display data RAM (DDRAM) that is
not used for display can be used as general data RAM. The following table shows the
relationships between DDRAM addresses and positions on the LCD.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
First line 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h
Second line 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h
Third line 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h 27h
Fourth Line 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh 60h 61h 62h 63h 64h 65h 66h 67h

In addition to the CGRAM and DDRAM, HD44780 has two 8-bit registers: an instruction
register (IR) and a data register (DR). The IR stores instruction codes, such as display clear and
cursor shift, and address information for display data RAM (DDRAM) and character generator
RAM (CGRAM). The IR can only be written from microprocessor. The DR temporarily stores
data to be written into DDRAM or CGRAM and temporarily stores data to be read from
DDRAM or CGRAM.

faculty
Typewritten Text
Textbook Web: www.mwftr.com/book.html

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

90

Data written into the DR from the microprocessor is automatically written into DDRAM or
CGRAM by an internal operation. The DR is also used for data storage when reading data
from DDRAM or CGRAM. When address information is written into the IR, data is read and
then stored into the DR from DDRAM or CGRAM by an internal operation. Data transfer to the
microprocessor is then completed when the microprocessor reads the DR. After the read, data in
DDRAM or CGRAM at the next address is sent to the DR for the next read from the processor.
By the register selector (RS) signal, these two registers can be selected. In 16F877 perspective,
by controlling the RS line for IR or DR, and sending a DDRAM location for display position and
a data for a character to display that position, we can display a character on a desired position.

In addition to the IR and DR, there is Address Counter (AC). The AC assigns addresses to both
DDRAM and CGRAM. When an address of an instruction is written into the IR, the address
information is sent from the IR to the AC. Selection of either DDRAM or CGRAM is also
determined concurrently by the instruction. After writing into (reading from) DDRAM or
CGRAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are
then output to DB0 to DB6 when RS = 0 and RW=0.

There are two interfacing method to a microprocessor. The HD44780U can send data in either
two 4-bit operations or one 8-bit operation. For 4-bit interface, only four bus lines (DB4 to DB7)
are used for transfer: Bus lines DB0 to DB3 are disabled. The data transfer between the
HD44780U and the microprocessor is completed only after the 4-bit data has been transferred
twice. As for the order of data transfer, the high nibble (DB4 to DB7) are transferred before the
low nibble (DB0 toDB3). The busy flag must be checked (one instruction) after the 4-bit data
has been transferred twice. Two more 4-bit operations then transfer the busy flag and address
counter data. For 8-bit interface, all eight bus lines (DB0 to DB7) are used.

This section will explore the control of a regular LCD module and a serial LCD module. One
caution we all have to use is that not all LCD modules are the same: some with different
characteristics and pin arrangement, etc. Therefore, before you try to connect a LCD to 16F877,
you have to read the data sheet of the module you received or bought. However, once you make
yourself familiar with the one presented in this section, on any module of LCD, you can easily
change the physical connection and code to adapt to the changing characteristics.

LCD example
A regular LCD module we discuss here is one manufactured by Truly which can display 4 rows,
20 characters per row, with character dot matrix size of 5x8. The exact model number is MTC-
C204. So we use 20x4 LCD display with HD44780 controller or equivalent.

The pin arrangement for the LCD module is listed below.

Pin NO. Symbol Level Description
1 VSS 0V Ground
2 VDD 5.0V Supply voltage for logic
3 VO --- Input voltage for LCD
4 RS H/L H : Data, L : Instruction code
5 R/W H/L H : Read mode, L : Write mode

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

91

6 E H, H → L Chip enable signal
7 DB0 H/L Data bit 0
8 DB1 H/L Data bit 1
9 DB2 H/L Data bit 2

10 DB3 H/L Data bit 3
11 DB4 H/L Data bit 4
12 DB5 H/L Data bit 5
13 DB6 H/L Data bit 6
14 DB7 H/L Data bit 7
15 BLA --- For LCD Backlight (Anode)
16 BLK --- For LCD Backlight (Cathode)

A host microprocessor "talks" to the LCD cotnroller/Driver via the data bus and 3 control lines:
Register Select (RS), Read/Write (RW) and Enable (E). This places minimal demands upon the
microprocessor. Only when the host microprocessor writes to or reads from the LCD, is
intercommunication required.

The Control and Display Command codes for communicating to HD44780 LCD
controller/driver are shown below. These codes are good for any LCD module with HD44780 or
equivalent processor as the controller/driver of the module.

Control/
Command

Code
R R B B B B B B B B
S W 7 6 5 4 3 2 1 0

Description Execution
Time with
f=250Khz

Clear Display 0 0 0 0 0 0 0 0 0 1 Clears all display and returns the cursor to the home
position (Address 0)

1.64ms

Return Home 0 0 0 0 0 0 0 0 1 X Returns the cursor to the home position (Address 0).
Also returns the display being shifted to the original
position.

1.64ms

Entry Mode Set 0 0 0 0 0 0 0 1 M S Set cursor move direction (M=1 for increase, M=0
for decrease) and shift of display (S=1 for shifted
and S=0 for not-shifted)

40µs

Display On/Off 0 0 0 0 0 0 1 D C B Sets On/Off of a Display (D=1 for On and D=0 for
Off), Cursor (C=1 for On and C=0 for Off), and
Blinking (B=1 for Blink On and B=0 for Blink Off)

40µs

Shift 0 0 0 0 0 1 S R X X Moves the cursor (S=1 for Shift and S=0 for Cursor
Move) and shifts display (R=1 for Right and R=0 for
Left Shift).

40µs

Set Function 0 0 0 0 1 L N F X X Sets interface data length (L=1 for 8-bit and L=0 for
4-bit), number at display lines (N=1 for 2 line
display and N=0 for 1 line display), and once
character font (F=1 for 5x10 and F=0 for 5x7 dots)

40µs

Set CG RAM
Address

0 0 0 1 <--Acg ---> Set the CG (Character Generator) RAM address (i.e.,
cursor address). CG RAM data is sent and received
after this set.

40µs

Set DD RAM
Address

0 0 1 <----Add----> Set the DD (Display Data) RAM address. DD RAM
data is sent and received after this set.

40µs

Read Busy Flag
& Address

0 1 B <--Acount---> Reads Bust Flag indicating internal operation is
being performed (B=1 for Busy and B=0 for Ready)
and read address counter (Acount) contents used for
both DD and CG RAMs.

1ms

Write Data 1 0 <----DATA-----> Write DATA to DD or CG RAM 40µs
Read Data 1 1 <----DATA-----> Read DATA from DD or CG RAM 40µs

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

92

The LCD Waveform diagram below shows how a data is written to the LCD module. As seen,
even though the data is written to the internal data register, it still cannot be displayed on the
LCD unless a High-to-Low transition input of E(Enable) signal is provided to the module.

Fig. 24 LCD Waveform diagram

This High-to-Low transition input of E(Enable) signal is also needed when an instruction is
written to the instruction register of the LCD controller/Driver. When your interface bit is 4,
then we have to send the data twice, higher nibble then lower nibble. For each nibble write, we
have to have the transitional E signal.

Initialization of LCD module
As mentioned above, HD44780 has an automatic reset circuit when power is on. The following
instructions are executed during the initialization. The busy flag (B) is kept in the busy state until
the initialization ends (B = 1). The busy state lasts for 10 ms after VCC rises to 4.5 V.

1. Display clear
2. Function set: 8-bit interface, 1-line display, 5x8 dot character font
3. Display on/off control: Display off, Cursor off, Blinking off
4. Entry mode set: Increment by 1, No shift (DDRAM is selected)

If the power supply condition does not reset properly, we have to initialize by instruction.
Following is a usual LCD module initialization sequence by instruction.

1. Give power to the LCD module.
2. Wait for 15ms or more so that LCD is warm and ready to respond.
3. Set function for interface data length (i.e., 8 or 4 bits), number of display lines, and

character dot matrix size.
4. Wait for 4.5 ms.
5. Check for Busy Flag.
6. Display Off.
7. Display Clear.
8. Set Entry mode.

Operation Example (8-bit interface with 8-digit 2 line display with internal reset)
We have many I/O ports in 16F877, so for this example, we try 4-bit interface and this requires
total 11 pins. Assume that PORTB is assigned to the 8 data lines <DB7:DB0>. Since we
usually do not read from we connect the RW line to the ground for always-reading status. The

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

93

busy flag checking, thus cannot be done by this configuration. However, giving enough time
delay after writing an instruction or data is does the job. Then, we need two more lines for RS
and E signal. Assume that they occupy two pins of PORTD.

LCDEven though the Truly LCD has four lines for display, internally, it is considered as 2 line
display. It's done all by the DDRAM address selection as shown in the DDRAM address map.
In other words, in 2 line mode, the first line can go from 00h to 40h, but since the LCD module
can display only 20 characters, the first line starts from 00 but ends at 13h, then from 14h to 27h
will be displayed at the third line. Similarly, the DDRAM addresses of 40h – 53h are displayed
at the second line and those of 54-67h are displayed at the fourth line.

The following example shows 8-bit interface (<DB7:DB0>) for 20x4 format with 5x8 dot matrix
size. Note that RW is tied to ground for ever-writing mode. The steps and accompanying code
will eventually display the four lines as shown below.

Step 1: Turn on Power to initialize the LCD. Give enough delay. There is no display.

A 16F877 instruction goes like this:

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

94

 call delay10ms
call delay10ms ;delay for 20ms

However, if you are not sure the power on reset actually work, you may have to follow
the recommended initialization process. See the instructional initialization process.

Step 2: Function set for 8-bit, 2-line display, and 5x8 dot matrix.
 RS=0
 <DB7:DB0>= 0 0 1 1 1 0 X X

16F877 instruction for this is:

 movlw 0x38
movwf PORTB
bcf PORTD, RS
bsf PORTD, E
bcf PORTD, E ;Transitional E signal
call delay10ms

 The above instruction writing can be made into a subroutine.
 ;subroutine instw (instruction write)

;instruction to be written is stored in W before the call
instw movwf PORTB

bcf PORTD, RS
bsf PORTD, E
bcf PORTD,E
call delay10ms
return

 Then, the above instruction can be rewritten to:
 movlw 0x38

call instw

Step 3. Display control: Display On, Cursor On, with no blinking are selected.
 RS=0
 <DB7:DB0>=0 0 0 0 1 1 1 0

Corresponding 16F877 code goes like:
 movlw 0x0E

call instw

Step 4: Entry mode set: Increment the DDRAM address by one and to shift the cursor to the right
at the time of write to DDRAM. Display is not shofted
 RS=0
 <DB7:DB0>= 0 0 0 0 0 1 1 0

Corresponding 16F877 code goes like:
movlw 0x0E
call instw

Step 5: Write data (i.e., 'P' of 50h in ASCII code) to DDRAM (The initial DDRAM address is set
to 00h by the power on initialization.) So the line#1 position 1 is already selected by the reset.
After this write, the cursor is incremented by 1 and shifted to the right.

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

95

 RS=1
 <DB7:DB0>= 0 1 0 1 0 0 0 0

Corresponding 16F877 code goes like:

movlw 0x50
movwf PORTB
bsf PORTD, RS
bsf PORTD, E
bcf PORTD, E ;Transitional E signal
call delay10ms

 By changing the above code into a subroutine, we have the following code:

 movlw 0x50

call dataw

;subroutine dataw (data write)
dataw movwf PORTB

bsf PORTD, RS
bsf PORTD, E
bcf PORTD, E ;Transitional E signal
call delay10ms
return

So we call instrw when RS=0 and dataw when RS=1.

Step 6: Write data (i.e., 'I' and 'C' next to 'P' in line #1) to DDRAM. Note that the DDRAM
address in automatically incremented by one after each write, therefore, we do not write the
DDRAM address (or position).
 RS=1
 <DB7:DB0>= 0 1 0 0 1 0 0 1 for 'I'
 <DB7:DB0>= 0 1 0 0 0 0 1 1 for 'C'

Corresponding 16F877 code goes like:
movlw 0x50 ;'I'
call dataw
movlw 0x43
call dataw ;'C'

Step 7. Set DDRAM address for the next 3 characters (A, N, and D) in line #2. The DDRAM
address starts from 40h for the line #2.
 RS=0
 <DB7:DB0>= 1 1 0 0 0 0 0 0 for 1000000b

Corresponding 16F877 code goes like:
 movlw 0xC0 ;B'11000000'

call instw ;RS=0

Step 8. Write the three characters, 'A', 'N', and 'D' to DDRAM. They are displayed at the line #2
from position 1.

RS=1
 <DB7:DB0>= 0 1 0 0 0 0 0 1 for 'A'

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

96

 <DB7:DB0>= 0 1 0 0 1 1 1 0 for 'N'
 <DB7:DB0>= 0 1 0 0 0 1 0 0 for 'D'

Corresponding 16F877 code goes like:
movlw 0x41 ;'A'
call dataw
movlw 0x4E
call dataw ;'N'
movlw 0x44
call dataw ;'D'

Step 9. Set DDRAM address for the next 3 characters (L, C, and D) in line #3. The DDRAM
address starts from 14h for the line #3.
 RS=0
 <DB7:DB0>= 1 0 0 1 0 0 0 0 for 0010000b

Corresponding 16F877 code goes like:
 movlw 0x94 ;B'10010100'

call instw ;RS=0

Step 10. Write the three characters, 'L', 'C', and 'D' to DDRAM. They are displayed at the line #3
from position 1.

RS=1
 <DB7:DB0>= 0 1 0 0 1 1 0 0 for 'L'
 <DB7:DB0>= 0 1 0 0 0 0 1 1 for 'C'
 <DB7:DB0>= 0 1 0 0 0 1 0 0 for 'D'

Corresponding 16F877 code goes like:
movlw 0x4C ;'L'
call dataw
movlw 0x43
call dataw ;'C'
movlw 0x44
call dataw ;'D'

Step 11. Set DDRAM address for the next 7 characters (D, I, S, P, L, A, and Y) in line #4. The
DDRAM address starts from 54h for the line #3.
 RS=0
 <DB7:DB0>= 1 1 0 1 0 1 0 0 for 11010100b

Corresponding 16F877 code goes like:
 movlw 0xD4

call instw ;RS=0

Step 12. Write the seven characters, 'D', 'I', 'S', 'P', 'L', 'A', and 'Y' to DDRAM. They are
displayed at the line #4 from position 1.

RS=1
<DB7:DB0>= 0 1 0 0 0 1 0 0 for 'D'
<DB7:DB0>= 0 1 0 0 1 0 0 1 for 'I'
<DB7:DB0>= 0 1 0 1 0 0 1 1 for 'S'
<DB7:DB0>= 0 1 0 1 0 0 0 0 for 'P'

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

97

<DB7:DB0>= 0 1 0 0 1 1 0 0 for 'L'
<DB7:DB0>= 0 1 0 0 0 0 0 1 for 'A'
<DB7:DB0>= 0 1 0 1 1 0 0 1 for 'Y'

Corresponding 16F877 code goes like:

movlw 0x44 ;'D'
call dataw
movlw 0x49 ;'I'
call dataw
movlw 0x53 ;'S'
call dataw ;
movlw 0x50 ;'P'
call dataw
movlw 0x4C ;'L'
call dataw
movlw 0x41 ;'A'
call dataw
movlw 0x59 ;'Y'
call dataw

Step 13. Now let's move the cursor to the home position (position 1 of line #1) and set the
DDRAM address to 0. This is done by the "return home" instruction.
 RS=0
 <DB7:DB0>= 0 0 0 0 0 0 1 0

Corresponding 16F877 code goes like:
movlw 0x02
call instw ;RS=0

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

98

Instructional initialization Process:

Step 1: When power on reset actually work, you have to follow the recommended
initialization process and have the following codes at the very first line:
 call delay10ms

call delay10ms
movlw 0x30
call instw ;see step 2 below for instw

Step 2: Function set for 8-bit, 2-line display, and 5x8 dot matrix. (Still part of
initialization. And this step for setting is final and cannot be changed after this step.)
 RS=0
 <DB7:DB0>= 0 0 1 1 1 0 X X

 16F877 instruction for this is:
 movlw 0x38

call instw

Step 3. Display off. (Still initialization process)
 RS=0
 <DB7:DB9>= 0 0 0 0 1 0 0 0
 16F877 instruction for this step is:
 movlw 0x08

call instw

Step 4. Display Clear. (Still in the initialization process)
 RS=0
 <DB7:DB0>= 0 0 0 0 0 0 0 1
 16F877 instruction for this step is:
 movlw 0x01

call instw

Step 5. Entry Mode Set (The last step of initialization) for increment and no shift
 RS=0
 <DB7:DB0>= 0 0 0 0 0 1 1 0
 16F877 instruction for this step is:
 movlw 0x06

call instw

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

99

Hardware connection
Let's connect the 20x4 LCD module as shown below. Eight data bus lines are connected to
PORTB, and E and RS are connected to PORTD<5> and PORTD<4>, respectively. RW is
connected to PORTD<6>, but, as indicated above, since our main function is to write either
command or data to LCD module, RW can be tied to the ground to make "write only" mode.

Fig 25. Hardware connection

Code example
Let's have an example code for the 8-bit interface mode control of a 20x4 LCD module. Follow
the code carefully for instructions and comments.

;LCD-P.asm
;
;This program is to display an 20x4 LCD module
;by Truly (HD44780 compatible)
;
;8-bit interfacing
;
;Pin Connection from LCD to 16F877
;LCD (pin#) 16F877 (pin#)

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

100

;DB7 (14) -----RB7(40)
;DB6 (13) ----RB6(39)
;DB5 (12) ----RB5(38)
;DB4 (11) ----RB4(37)
;DB3 (10) ----RB3(36)
;DB2 (9)---- RB2(35)
;DB1 (8) ----RB1(34)
;DB0 (7) ----RB0(33)
;E (6) ------RD5(28)
;RW (5) -----RD6(29)
;RS (4) -----RD4(27)
;Vo (3) -----+5V
;Vdd (2) ----+5V
;Vss (1) -----GND
;
;Example code to display:
; PIC
; AND
; LCD
; DISPLAY
;

list P = 16F877

STATUS EQU 0x03
PORTB EQU 0x06
TRISB EQU 0x86
PORTD EQU 0x08
TRISD EQU 0x88
RS EQU 0x04 ;RD4
E EQU 0x05 ;RD5
RW EQU 0x06 ;RW

;RAM arEA

CBLOCK 0x20
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m

ENDC

;
;The Next 5 lines must be here
;because of bootloader arrangement
;Bootloader first execute the first 4 addresses
;then jump to the address what the execution directs
;===

org 0x0000 ;line 1
goto START ;line 2 ($0000)
org 0x05

START
BANKSEL TRISD

; 1 for input, 0 for output
movlw 0x00
movwf TRISD
movwf TRISB ;RB<7:0> are all outputs

banksel PORTB
clrf PORTB

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

101

clrf PORTD ;Here RW is pulled down to ground
;LCD routine starts

call delay10ms
call delay10ms

;give LCD module to reset automatically
;Fundtion for 8-bit, 2-line display, and 5x8 dot matrix

movlw 0x38
call instw

;Display On, CUrsor On, No blinking
movlw 0x0E ;0F would blink
call instw

;DDRAM address increment by one & cursor shift to right
movlw 0x06
call instw

;DISPLAY CLEAR
movlw 0x01
call instw

;Set DDRAM ADDRES
movlw 0x80 ;00
call instw

;WRITE DATA in the 1st position of line 1
movlw 0x50 ;P
call dataw

movlw 0x49 ;I
call dataw

movlw 0x43 ;C
call dataw

;Set DDRAM address for the 1st position of line 2 (40h)

movlw 0xC0 ;B'11000000'
call instw ;RS=0

;Write A, N, D

movlw 0x41 ;A
call dataw
movlw 0x4E
call dataw ;N
movlw 0x44
call dataw ;D

;Set DDRAM address for the next 3 characters (L, C, and D) in line #3. (14h)
;The DDRAM address starts from 14h for the line #3.

movlw 0x94 ;B'10010000'
call instw ;RS=0

;Write the three characters, 'L', 'C', and 'D' to DDRAM.
;They are displayed at the line #3 from position 1.

movlw 0x4C ;L
call dataw
movlw 0x43
call dataw ;C
movlw 0x44
call dataw ;D

;Set DDRAM address for the next 7 characters (D, I, S, P, L, A, and Y) in line
#4.
;The DDRAM address starts from the line #4. (54h)

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

102

movlw 0xD4
call instw ;RS=0

;Write the seven characters, 'D', 'I', 'S', 'P', 'L', 'A', and 'Y' to DDRAM.
;They are displayed at the line #4 from position 1.

movlw 0x44 ;D
call dataw
movlw 0x49 ;I
call dataw
movlw 0x53 ;S
call dataw ;
movlw 0x50 ;P
call dataw
movlw 0x4C ;L
call dataw
movlw 0x41 ;A
call dataw
movlw 0x59 ;Y
call dataw

;Now let's move the cursor to the home position (position 1 of line #1)
;and set the DDRAM address to 0. This is done by the "return home"
instruction.

movlw 0x02
call instw

IDLE nop
goto IDLE

;====SUBROUTINES =====
;subroutine instw (instruction write)
;instruction to be written is stored in W before the call
instw movwf PORTB

call delay1ms ;delay may not be needed
bcf PORTD, RS
call delay1ms
bsf PORTD, E
call delay1ms
bcf PORTD,E
call delay10ms
return

;subroutine dataw (data write)
dataw movwf PORTB

call delay1ms ;delay may not be needed
bsf PORTD, RS
call delay1ms
bsf PORTD, E
call delay1ms
bcf PORTD, E ;Transitional E signal
call delay10ms
return

;
;==
;DELAY SUBROUTINES

Delay120us
banksel Kount120us
movlw H'C5' ;D'197'
movwf Kount120us

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

103

R120us
decfsz Kount120us
goto R120us
return

;
Delay100us

banksel Kount100us
movlw H'A4'
movwf Kount100us

R100us
decfsz Kount100us
goto R100us
return

;
;1ms delay
Delay1ms

banksel Kount1ms
movlw 0x0A ;10
movwf Kount1ms

R1ms call delay100us
decfsz Kount1ms
goto R1ms
return

;
;10ms delay
; call 100 times of 100 us delay (with some time discrepancy)
Delay10ms

banksel Kount10ms
movlw H'64' ;100
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

;
;

;1 sec delay
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw H'64'
movwf Kount1s

R1s call Delay10ms
decfsz Kount1s
goto R1s
return

;
;
;10 s delay
;call 10 tiems of 1 s delay
Delay10s

banksel Kount10s
movlw H'0A' ;10
movwf Kount10s

R10s call Delay1s
decfsz Kount10s
goto R10s
return

;
;1 min delay
;call 60 times of 1 sec delay
Delay1m

banksel Kount1m

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

104

movlw H'3C' ;60
movwf Kount1m

R1m call Delay1s
decfsz Kount1m
goto R1m
return

;==
END

Run your program and see if you have the following display with an underscore cursor under 'P'
of the fist line with lit backlight as shown below.

2. LCD Displaying: 4-bit Interface Example

Even though 16F877 has an ample amount of I/O pins, it's always wise to save a few pins for
future use. Also, if we can achieve with fewer number of I/O pins the same function, there is no
reason not to try the economical method. The 4-bit interface method is different from 8-bit
interface only how we send the 8-bit data over 8 data lines or 4 data lines.
In 4-bit interface, we separate the 8-bit data by nibbles and send each nibble at a time.
Therefore, for coding perspective, the only difference is the change in the subroutines of instw
and dataw. Of course, we have to instruct the LCD module for 4-bit interface instead of 8-bit.

However, there is a slight odd step you have to have before setting the 4-bit interface. The
HD44780 requires, for 4-bit interface only, to send the only the high nibble at the first step, and
to send the high and low nibbles at the second step. In other words, the setting up for 4-bit
interface has, unlike in 8-bit interface, an additional weird step. This is very important. If you
miss this first step, you would some weird behavior from the LCD module such as one reset
would show proper display and another would not.

The first step for function set for 4-bit interface:
RS=0
<DB7:DB4>=0 0 1 0
Then, the above instruction can be rewritten as:

movlw 0x28
call hnibble4

with subroutine hnibble4;
hnibble4

movwf Temp ;Temp storage
movf Temp,0 ;Now W also holds the data
andlw 0xF0 ; get upper nibble
movwf PORTB ; send data to lcd

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

105

bcf PORTB, RS
bsf PORTB, E
call delay1ms
bcf PORTB, E
call delay10ms ;end of high nibble for 4-bit setup
return

The second step for 4-bit interface now can set for for 4-bit, 2-line display, and 5x8 dot matrix:
 RS=0
 <DB7:DB0>= 0 0 1 0 1 0 X X

Then, the above instruction can be rewritten as (with X=0):
 movlw 0x28

call instw4

However, since we have to separate the byte into two nibbles and send each nibble separately,
we have to change the instw subroutine to instw4 subroutine.

;subroutine instw4 (4-bit interface instruction write)
;instruction to be written is stored in W before the call
instw4

movwf Temp ;Temp storage
movf Temp,0 ;Now W also holds the data
andlw 0xf0 ; get upper nibble
movwf PORTB ; send data to lcd
bcf PORTB, RS
bsf PORTB, E
call delay1ms
bcf PORTB, E
call delay10ms ;end of higher nibble
swapf Temp,0 ;get lower nibble to W
andlw 0xf0
movwf PORTB ;Write to LCD
bcf PORTB, RS
bsf PORTB, E
call delay1ms
bcf PORTB, E ;end of lower nibble
call delay10ms
return

Similarly, the data write subroutine dataw must also be changed to dataw4 to reflect the
change in data transmission.

dataw4

movwf Temp ;Temp storage
movf Temp,0 ;Now W also holds the data
andlw 0xf0 ; get upper nibble
movwf PORTB ; send data to lcd
bsf PORTB, RS
bsf PORTB, E
call delay1ms
bcf PORTB, E
call delay10ms ;end of higher nibble
swapf Temp,0 ;get lower nibble to W
andlw 0xf0
movwf PORTB ;Write to LCD
bsf PORTB, RS
bsf PORTB, E
call delay1ms

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

106

bcf PORTB, E ;end of lower nibble
call delay10ms
return

Additional change you have to bring to the code is to correctly assign the pins of RW, RS, and E
to PORTB. As you see the following 4-bit interface illustration, we use only PORTB for a LCD
module.

Fig. 26 4-bit Interface Illustration

Special Character Display using Character Generator ROM (CGROM)
The character generator ROM generates 5x8 dot or 5x10 dot character patterns from 8-bit
character codes (See the CGROM character codes of HD44780 manual). It can generate 208 5x8
dot character patterns and 32 5x10 dot character patterns. User-defined character patterns are
also available by mask-programmed ROM. So we can display even some weird characters.
Let's add a few lines of instructions, then, to write a line of Alphabet and a line of symbol (or
Greek) equivalent. From the CGROM map, we found that α, ρ, and µ are at E0, E6, and E4,

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

107

respectively. So by the following instruction should display the example display illustrated after
the code.

;display a, r, m at line 1
;alpha, rho, and mu at line 2
;Set DDRAM ADDRESS for line 1

movlw 0x80 ;00
call instw4
movlw 'a'
call dataw4
movlw 'r'
call dataw4
movlw 'm'
call dataw4

;Set DDRAM ADDRES for line 2
;CGROM address for alpha, rho, and mu are E0, E6, and E4, respectively

movlw 0xC0 ;00
call instw4
movlw 0xE0
call dataw4
movlw 0xE6
call dataw4
movlw 0xE4
call dataw4

3. LCD Displaying -Serial LCD

As discussed above, we know that a LCD module with internal controller/driver provides all the
functions such as display RAM, character generator, and liquid crystal driver, required for
driving a dot-matrix liquid crystal display, and either 11 lines or 7 lines of processor are needed
to interface with the controller/driver of the LCD module. However, to many a hobbyist and
students, the control of the controller/driver following the timing diagram suggested in the
manual of the module or the controller/driver seems to be a lot of trouble. Also, the requirement
of many pins causes some burden for certain processors with fewer I/O pins.

Because either of many pins required for connection or of rather a complex control scheme (at
least, by just reading a multi-page control instruction provided by the manufacturer of the LCD
module, or by the lack of such instruction), many sought an easier alternative approach. A
popular solution to this search is a so-called serial LCD module which requires only one pin
(actually three, including +5V and GND connections). A serial LCD module has, in addition to
the LCD controller/driver, a convert chip which coverts serial data into a parallel data and signals
necessary for the controller/driver. The converter is actually a serial-in/parallel-out shift register,
which uses the synchronous serial data pin to load a serial stream of data. Of course, the shift
register and accessory circuit can be replaced by a microcontroller for better and simpler control

ckim
Rectangle

