1/O speeds?
This question has been Answered.

Web link: https://communities.intel.com/thread/45267

E Correct Answer
by deckard026354 on Oct 4, 2013 709 AM

Joe
* GPIO
¢ Default max throghput is 230 Hz
o |02 and 103 if configured as OUTPUT_FAST - will clock in at 477 kHz - to 2.93 MHz
= digitalWrite() will achieve 477 kHz
= fastGpioDigitalWrite() - an Intel extension of the Arduino API will achieve 680 kHz
= fastGpioDigitalWriteDestructive - can achieve GPIO speeds of about 2.93 MHz
o Example sketch usage below
* SPI
o The Arduino APl does byte-by-byte SPI transactions - which are not especially fast
o Intel has provided an API extension to allow transfer of larger blocks of SPI data transferBuffer
@ This extension should allow Arduino sketches to take better advantage of the 5Pl interface.
o | don't have the throughput number to hand - will search for it.
e ADC
© The throughput of the ADC is constrained by the SPI
* |nterrupts
o In theory it would be possible to circumvent the GPIO input mechanism to Kick a task in user-space
o Right now we allow
= GPIO lib based callbacks

= HPET driven callbacks with granularity up to 1 kHz
o As with all systems based on a general purpose operating system and even some systems that claim determinism - your reaction time to

any given event is a function of the workload the processors is engaged in. A quiescent system is likely to react very quickly to a GPIO even
if its triggering a user-space application. A system under load could have significant jitter. This is down to the choices made by the

application engineer re: how much concurrent processing is appropriate.

Galileo - has two pins 102 and 103 through which we can drive significant data rates.
By default these two pins are routed to the cypress.
There are three methods to communicate with these pins - which have increasing throughput

1. digitalWrite()
1. Using this method it is possible to toggle an individual pin in a tight loop @ about 477 kHz
2. pinMode(2, OUTPUT_FAST);
3. pinMode(3, OUTPUT_FAST);
4_This is a read-modify-write
1. To toggle a bit - first we read
2. Then we update
3. Then we write back
2. fastGpioDigitalWrite(register uint8_t gpio, register uint8_t val)
1. This function actually lets you write directly to the registers - without going through the code around digitalWrite() and consequently has
better performance than a straight digitalWrite
2. Using this method it is possible to toggle an individual pin (GPIO_FAST_102, GPIO_FAST_I03) at about 680 kHz
3. pinMode(2, OUTPUT_FAST);
4 pinMode(3, OUTPUT_FAST);
1. fastGpioDigitalWrite(GPIO_FAST 102, 1J;
2. fastGpioDigital Write(GPIO_FAST |03, 0);
5. Again this uses read/modify/write - and can togele one GPIO at a time



3. fastGpioDigitalWriteDestructive(register uint8_t gpio_mask);

1. Using this method it is possible to achieve 2.93 Mhz data toggle rate on 102/103 individually or simultaneously

2. pinMode(2, OUTPUT_FAST);

3. pinMode(3, OUTPUT_FAST);

4_Itis the responsibility of the application to maintain the state of the GPIO registers directly

5. To enable this a function called fastGpioDigitalLatch() is provided - which allows the calling logic to latch the initial state of the GPIOs -
before updating later

6. This method just writes GPIQ bits straight to the GPIO register - i.e. a destructive write - for this reason it is approximately 2 x faster then
read/modify/write

Example-1 - outputs 477kHz waveform on 102:
setup(i{
pinMode(2, OUTPUT_FASTY;
}
loop()
{
register int x = 0;
while(1){
digitalWrite(2, x);
x =l

Example-2 - outputs 683kHz waveform on 103:
setup(i{
pinMode(3, OUTPUT _FASTY);
}
loop()
{
register int x = 0;
while(1){
fastGpioDigitalWrite(GPIO_FAST 103, x);
x =l
}
Example-3 - outputs 2.93MHz waveform on 103:
uint32_t latchValue;
setup(i{
pinMode(3, OUTPUT_FASTY;
latchValue = fastGpioDigitalLatch();
}
loop()
{
while(1){
fastGpioDigitalWriteDestructive(latchValue);
latchValue ~= GPIO_FAST 103;
}
}
Example-4 - outputs 2.93MHz waveform on both 102 and 103:
uint32_t latchValue;
setup(i{
pinMode(2, OUPUT_FASTMODE);
pinMode(3, OUPUT_FASTMODE);
latchValue = fastGpioDigitalLatch(); // latch initial state
}
loop()
{
while(1){
fastGpioDigitalWriteDestructive(latchValue);
if{latchValue & GPIO_FAST_I03H



latchValue |= GPIO_FAST 102;

latchValue &= ~ GPIO_FAST_IO3;
}else{

latchValue |= GPIO_FAST 103;

latchValue &= GPIO_FAST 102;

1

In other words the responsibility lies with the application designer in cases 3 and 4 to ensure the GPIO register values are correct - assuming - these
values matter to the application use-case





