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Chapter Five

The Processor: Detapath and Control
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Translation of Microprogramming to Hardware

* A specification methodology

— appropriate If hundreds of opcodes, modes, cycles,
etc.

— signals specified symbolically using
microinstructions

 Two additional tasks to translate the microprogram
— assign addresses to the microinstructions and
— fill in the contents of the dispatch ROMs.

e This process is essentially the same as the process of
translating an assembly language program into
machine instructions:

— the fields of the assembly language or
microprogram instruction are translated, and

— |labels on the instructions must be resolved to
addresses.



Microcode field to control signal (table)
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Sequencing Fields and Dispatch Table

 The sequencing field can have four values:
— Fetch (meaning go to the Fetch state),
— Dispatch 1,
— Dispatch 2, and
— Seq.
— These four values are encoded to set the 2-bit address control

State number Addrass-contral action Value of Addrtl

4] Usa incremented state b
Use dispatch ROM 1

Fa Jse dispatch RUM 2 £

3 Usa Incremented state =

! ieplace state number by O u}
laplace state numser By O 4]

5] Uaa incremented state =
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— Fetch = 0,Dispatch 1 =1, Dispatch 2 = 2, Seq = 3.



Dispatch Specification

» specify the contents of the dispatch tables

— to relate the dispatch entries of the sequence field to the
symbolic labels in the microprogram.
— the dispatch tables.

* The first column in each table indicates the value of Op, which is the
address used to access the dispatch ROM.

e The second column shows the symbolic name of the opcode.
* The third column indicates the value at that address in the ROM.

Dispatch ROM 1 Dispatch ROM 2
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Microcode Assembler

» A microcode assembler would use:
— the encoding of the sequencing field,

— the contents of the symbolic dispatch tables in Figure C.5.2,

opcese some[vetvs [l opeod tidopeodevame._[ Ve
G000 F-format Fformatl 100011 3 LW
OO0 O JUnPa 10011 L
OO0 A0 EECL
A0 1 Meml
1011 Memil

— the specification (in Microcode table)
— the actual microprogram

Register PC'Write
Label control control | Sequencing

— to generate the microinstructions. 8



Implementation of the Microprogram

« Atypical implementation of a microcode controller:

— an explicit incrementer to compute the default
sequential next state and

— would place the microcode in a read-only
memory.

* The microinstructions are assembled directly from the
microprogram.

« The microprogram counter, which replaces the state
register of a finite state machine controller,
determines how the next microinstruction is chosen.

 The address select logic contains the dispatch tables
as well as the logic to select from among the W - —
alternative next states; the selection of the next o
microinstruction is controlled by the sequencing
control outputs from the control logic.

» The combination of the current microprogram
counter, incrementer, dispatch tables, and address

select logic forms a sequencer that selects the next l l ——*

microinstruction. N Y S /3
 The microcode storage may consist either of read- | Atcvems select g |+

only memory (ROM) or may be implemented by a

PLA. PLAs may be more efficient in VLSI veger peosde Skl

implementations, while ROMs may be easier to
change. 9



« Hardest Part of Control (and Implementation)
— EXception
 Unexpected event from within the processor
o (ex) arithmetic overflow
— Interrupt
 An exception that comes from outside of the processor
* (ex) I/O device seeking communication with the processor
« Confusion over the terms
— Most
* Interrupt=interrupt and/or exception
— MIPS convention
« EXxception = cause is either internal or external
* Interrupt = event is externally caused

10



Exceptions and Our Interests in this chapter

Type of Event Cause Exp/Int

IFO Device Request External Interrupt

Invoke O3S from User Program Internal Exception
Arithmetic Overflow Internal Exception
Using Undefined Instruction Internal Exception
Hardware Malfunctions Either Exp or Int

e Our interests
— Control Implementation for detecting two types of
exceptions
— EXxceptions that arise from the portions of the instruction
set we already have already discussed

 Importance of exceptions during the design of the control unit
— Detection of exceptional conditions
— Taking appropriate action

11



Exception Handling

« Two types of exceptions
— Execution of undefined instruction
— Arithmetic Overflow
 Basic Action of the machine upon exception condition

— Save the offending instruction in EPC (exception program
counter): 32-bit Register

— Transfer control to OS at some specified address
e (OS actions

— Initial action
* Providing some service to user program, or
« Taking some predefined action in response to an over flow, or
« Stopping the execution of the program and error reporting

— Next Action

 Terminate (or continue) execution using EPC (to determine where to
restart the execution)
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Exception Control

 Exception Reason Finding
— 2 main methods used to communicate the reason for exception
— Cause Register (a status register) : MIPS approach
» A field indicates the reason for exception
— Vectored Interrupt
» Cause of exception determines the transfer address
* (ex)
— Undefined Instruction = 0000 0000
— Arithmetic Overflow - 0000 0020
 OS knows the cause of the exception by the address at which it is
initiated
 Addresses are separated by 32 bytes (or 8 instructions)
« Exception Control (in MIPS) for our case
— EPC: 32-bit register which holds the addr of the affected instr
— Cause: 32-hit register to record the cause of the exception
* Since we have only two causes
* Bit0=0 ->undefined instruction
e Bit0O->1 Arithmetic Overflow
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Control Signals for Exception Handling

« Additional for the datapath
— 2 registers
« EPC
 Cause
— Control Lines
« EPCWrite
o CauseWrite
* IntCause : to set the low-order bit of the Cause register
— EXxception Address
* OS entry point for exception handling
« 0x8000 0180 (MIPS)
« 0x8000 0080 (MIPS Simulator)
e Writing PC value to EPC
— Since 4 is already added

— 4 must be subtracted before writing into EPC
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Final Multicycle Datapath including Exception
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How Control checks for exceptions

e Detection of Undefined Instruction

— When no next state is defined from state 1 for the
op value.

— Define the next state value for all op other than | w,
sw, O (R-Type), ], and beq as statelO.

* Detection of Arithmetic Overflow
— ALU includes logic to detect overflow
— “Overflow” signal is provided from ALU

— State 11 is assigned to this exception as the next
state from state 7
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Complete FSM including exceptions
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Maximally vs. Minimally Encoded

 No encoding:
— 1 bit for each datapath operation
— faster, requires more memory (logic)
— used for Vax 780 — an astonishing 400K of memory!
« Lots of encoding:
— send the microinstructions through logic to get control signals
— uses less memory, slower
« Historical context of CISC:
— Too much logic to put on a single chip with everything else
— Use a ROM (or even RAM) to hold the microcode
— It’s easy to add new instructions

18



Historical Perspective

* Inthe ‘60s and ‘70s microprogramming was very important for
Implementing machines

 This led to more sophisticated ISAs and the VAX

* Inthe ‘80s RISC processors based on pipelining became popular
« Pipelining the microinstructions is also possible!

* Implementations of IA-32 architecture processors since 486 use:

— “hardwired control” for simpler instructions
(few cycles, FSM control implemented using PLA or random logic)

— “microcoded control” for more complex instructions
(large numbers of cycles, central control store)

 The IA-64 architecture uses a RISC-style ISA and can be
Implemented without a large central control store
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Chapter 5 Summary

If we understand the instructions...
We can build a simple processor!

If instructions take different amounts of time, multi-cycle is better

Datapath implemented using:
— Combinational logic for arithmetic

— State holding elements to remember bits

Control implemented using:
— Combinational logic for single-cycle implementation

— Finite state machine for multi-cycle implementation
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