
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM



2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy



3

Chapter Five

The Processor: Detapath and Control

Part C



4

Translation of Microprogramming to Hardware

• A specification methodology
– appropriate if hundreds of opcodes, modes, cycles, 

etc.
– signals specified symbolically using 

microinstructions
• Two additional tasks to translate the microprogram

– assign addresses to the microinstructions and 
– fill in the contents of the dispatch ROMs. 

• This process is essentially the same as the process of 
translating an assembly language program into 
machine instructions: 
– the fields of the assembly language or

microprogram instruction are translated, and 
– labels on the instructions must be resolved to 

addresses.



5

Microcode field to control signal (table)
• Each microcode field 

translates to a set of 
control signals to be set. 

• This table specifies a 
value for each of the fields:
– 22 different values of 

the fields specify all 
the required 
combinations of the 18 
control lines.

– Control lines that are 
not set which 
correspond to actions 
are 0 by default. 

– Multiplexor control 
lines are set to 0 if the 
output matters. 

– If a multiplexor control 
line is not explicitly set, 
its output is a don’t 
care and is not used.



6

Sequencing Fields and Dispatch Table

• The sequencing field can have four values: 
– Fetch (meaning go to the Fetch state), 
– Dispatch 1, 
– Dispatch 2, and 
– Seq.
– These four values are encoded to set the 2-bit address control 

– Fetch = 0,Dispatch 1 = 1, Dispatch 2 = 2, Seq = 3. 



7

Dispatch Specification

• specify the contents of the dispatch tables 
– to relate the dispatch entries of the sequence field to the 

symbolic labels in the microprogram. 
– the dispatch tables.

• The first column in each table indicates the value of Op, which is the 
address used to access the dispatch ROM. 

• The second column shows the symbolic name of the opcode. 
• The third column indicates the value at that address in the ROM.



8

Microcode Assembler

• A microcode assembler would use:
– the encoding of the sequencing field, 
– the contents of the symbolic dispatch tables in Figure C.5.2,

– the specification (in Microcode table)
– the actual microprogram

– to generate the microinstructions.



9

Implementation of the Microprogram
• A typical implementation of a microcode controller:

– an explicit incrementer to compute the default 
sequential next state and 

– would place the microcode in a read-only 
memory. 

• The microinstructions are assembled directly from the
microprogram. 

• The microprogram counter, which replaces the state 
register of a finite state machine controller, 
determines how the next microinstruction is chosen. 

• The address select logic contains the dispatch tables 
as well as the logic to select from among the 
alternative next states; the selection of the next 
microinstruction is controlled by the sequencing 
control outputs from the control logic. 

• The combination of the current microprogram
counter, incrementer, dispatch tables, and address 
select logic forms a sequencer that selects the next 
microinstruction. 

• The microcode storage may consist either of read-
only memory (ROM) or may be implemented by a 
PLA. PLAs may be more efficient in VLSI 
implementations, while ROMs may be easier to 
change. 



10

Exceptions

• Hardest Part of Control (and Implementation)
– Exception

• Unexpected event from within the processor
• (ex) arithmetic overflow

– Interrupt
• An exception that comes from outside of the processor
• (ex) I/O device seeking communication with the processor

• Confusion over the terms
– Most

• Interrupt=interrupt and/or exception
– MIPS convention

• Exception = cause is either internal or external
• Interrupt = event is externally caused



11

Exceptions and Our Interests in this chapter

• Our interests
– Control Implementation for detecting two types of 

exceptions
– Exceptions that arise from the portions of the instruction 

set we already have already discussed
• Importance of exceptions during the design of the control unit

– Detection of exceptional conditions
– Taking appropriate action



12

Exception Handling
• Two types of exceptions

– Execution of undefined instruction
– Arithmetic Overflow

• Basic Action of the machine upon exception condition
– Save the offending instruction in EPC (exception program 

counter): 32-bit Register 
– Transfer control to OS at some specified address

• OS actions
– Initial action

• Providing some service to user program, or
• Taking some predefined action in response to an over flow, or
• Stopping the execution of the program and error reporting

– Next Action
• Terminate (or continue) execution using EPC (to determine where to 

restart the execution)



13

Exception Control

• Exception Reason Finding 
– 2 main methods used to communicate the reason for exception
– Cause Register (a status register) : MIPS approach

• A field indicates the reason for exception
– Vectored Interrupt

• Cause of exception determines the transfer address
• (ex)

– Undefined Instruction ���� 0000 0000
– Arithmetic Overflow ���� 0000 0020

• OS knows the cause of the exception by the address at which it is 
initiated

• Addresses are separated by 32 bytes (or 8 instructions)
• Exception Control (in MIPS) for our case

– EPC: 32-bit register which holds the addr of the affected instr
– Cause: 32-bit register to record the cause of the exception

• Since we have only two causes
• Bit0=0 ����undefined instruction
• Bit0����1 Arithmetic Overflow



14

Control Signals for Exception Handling

• Additional for the datapath
– 2 registers

• EPC
• Cause

– Control Lines
• EPCWrite 
• CauseWrite
• IntCause : to set the low-order bit of the Cause register

– Exception Address
• OS entry point for exception handling
• 0x8000 0180 (MIPS)
• 0x8000 0080 (MIPS Simulator)

• Writing PC value to EPC
– Since 4 is already added
– 4 must be subtracted before writing into EPC



15

Final Multicycle Datapath including Exception



16

How Control checks for exceptions

• Detection of Undefined Instruction
– When no next state is defined from state 1 for the 

op value.
– Define the next state value for all op other than lw,
sw, 0 (R-Type), j, and beq as state10.

• Detection of Arithmetic Overflow
– ALU includes logic to detect overflow
– “Overflow” signal is provided from ALU
– State 11 is assigned to this exception as the next 

state from state 7



17

Complete FSM including exceptions



18

• No encoding:
– 1 bit for each datapath operation
– faster, requires more memory (logic)
– used for Vax 780 — an astonishing 400K of memory!

• Lots of encoding:
– send the microinstructions through logic to get control signals
– uses less memory, slower

• Historical context of CISC:
– Too much logic to put on a single chip with everything else
– Use a ROM (or even RAM) to hold the microcode
– It’s easy to add new instructions

Maximally vs. Minimally Encoded



19

Historical Perspective

• In the ‘60s and ‘70s microprogramming was very important for 
implementing machines

• This led to more sophisticated ISAs and the VAX
• In the ‘80s RISC processors based on pipelining became popular
• Pipelining the microinstructions is also possible!
• Implementations of IA-32 architecture processors since 486 use:

– “hardwired control” for simpler instructions 
(few cycles, FSM control implemented using PLA or random logic)

– “microcoded control” for more complex instructions
(large numbers of cycles, central control store)

• The IA-64 architecture uses a RISC-style ISA and can be 
implemented without a large central control store



20

Chapter 5 Summary

• If we understand the instructions…
We can build a simple processor!

• If instructions take different amounts of time, multi-cycle is better

• Datapath implemented using:

– Combinational logic for arithmetic

– State holding elements to remember bits

• Control implemented using:

– Combinational logic for single-cycle implementation

– Finite state machine for multi-cycle implementation




