WWW.MWFITR.C

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007


faculty
Typewritten Text
WWW.MWFTR.COM


Computer Organization and Design (3" Ed)

-The Hardware/Software Interface

)Y

David A. Patterson
John L. Hennessy




Chapter Five

The Processor: Detapath and Control

Part C




Translation of Microprogramming to Hardware

* A specification methodology

— appropriate If hundreds of opcodes, modes, cycles,
etc.

— signals specified symbolically using
microinstructions

 Two additional tasks to translate the microprogram
— assign addresses to the microinstructions and
— fill in the contents of the dispatch ROMs.

e This process is essentially the same as the process of
translating an assembly language program into
machine instructions:

— the fields of the assembly language or
microprogram instruction are translated, and

— |labels on the instructions must be resolved to
addresses.



Microcode field to control signal (table)

« Each microcode field
L N T

translates to a set of = — lu el

control signals to be set. icors  [Su

ALUUp =101 AL to subtract; this implements the compare for branches,
o ThiS table SpeCifieS a :.I|[,:"|r: code : .J'E:llerL l:: the ing IrII.I = II‘“LIHH Jllilllml daterming ALL control
value for each of the fields: A A s the frst ALL i
3 ALUSCE = Ol i 15 the = d ALL imput.

22 different values of

the f|e|ds Specrfy a” e Extend ALUSE = 10 tput of the sign extension unit 23 the second ALU input.
. Extshft ALUSeE = 11 it of the shiftby-two uni &5 the second ALL input
the I’ECIUII'ed tead a two ragjatars using the rs and it fields of the IR 2= the register numbers
: : and putting the data into registers 1. nd B.
Comblnatlons Of the 18 Writa ALLI Hegiwnta, Wte using the rd field of the ¥ as the reg@istar number and the
ContrOI ||nes Hegister IE::ﬂ.JET 1, MemtoReg L|. Out &s the data.

ALUSE = 1]

ALL input.

ALL
Al
|
|
ALUSeA =1
LU
LU
LU
LU

control

L=
L=
i
i
Lt=e 4 as the
L=
L=
Jie

H Writa MOR L) I'\II Wiite a registar using the it field of the IR &5 the redister number and the
- Contr0| IIneS that are Regl ontents of the MDR as the data.
[ 'Ill. e =1

IKWnite
are O by d efau It . emaory Jead ALL Mamkead Kead mamary using ALUUUL a5 address; wite rasult into MLUH.
lori =1
-_ M u |t| plexor ContrC)l Write ALL MamWrite Wite memaory using the ALUOWE &s address, contents of B as the data.
. . lori =1
||neS al'e Set tO O |f the ALL PCSource = 00, Write the output of the ALL into the PC.
PCWite
O Utp Ut m atte rS " P wmite control ALLOU-Cond Flsource = U1, It the Lero cutput of the ALL 1= active, wnte the PC with the contents of the
. PCWteCond register ALUOUE.
- If a m u Itl plexor CO ntrOI jump address PCSource = 10, PCWnte | Write the PC with the jump addrass from the instruction.

not set which
correspond to actions

line is not explicitly set,
its output is a don't
care and is not used.

MamHead
lorlk = U,

fead mamary using the PC as add

ass; write rasult into IR (and the

MALIE).

SEOUENCINE

a8

Addrictl =11

Choose the next microinstruction sequentially

AddrCtl = 00

G to the first microingtruction to begin & new instruction.

Liepateh 1

Addrict] = a1

Dispatch using the RUM 1,

Ciepateh 2

Addrctl = 10

Diapatch using the ROM 2,




Sequencing Fields and Dispatch Table

 The sequencing field can have four values:
— Fetch (meaning go to the Fetch state),
— Dispatch 1,
— Dispatch 2, and
— Seq.
— These four values are encoded to set the 2-bit address control

State number Addrass-contral action Value of Addrtl

4] Usa incremented state b
Use dispatch ROM 1

Fa Jse dispatch RUM 2 £

3 Usa Incremented state =

! ieplace state number by O u}
laplace state numser By O 4]

5] Uaa incremented state =
teplace gtate numoer By O i

Fa laplace State numder By O u
weplace State numoer By O u

— Fetch = 0,Dispatch 1 =1, Dispatch 2 = 2, Seq = 3.



Dispatch Specification

» specify the contents of the dispatch tables

— to relate the dispatch entries of the sequence field to the
symbolic labels in the microprogram.
— the dispatch tables.

* The first column in each table indicates the value of Op, which is the
address used to access the dispatch ROM.

e The second column shows the symbolic name of the opcode.
* The third column indicates the value at that address in the ROM.

Dispatch ROM 1 Dispatch ROM 2

R N

O H-Tarm.at o 101l W (il

0 [1]#; 14k 107011 4= a1

OO0 FEL] LR
L0 , s LE
103011 ;I s LE




Microcode Assembler

» A microcode assembler would use:
— the encoding of the sequencing field,

— the contents of the symbolic dispatch tables in Figure C.5.2,

opcese some[vetvs [l opeod tidopeodevame._[ Ve
G000 F-format Fformatl 100011 3 LW
OO0 O JUnPa 10011 L
OO0 A0 EECL
A0 1 Meml
1011 Memil

— the specification (in Microcode table)
— the actual microprogram

Register PC'Write
Label control control | Sequencing

— to generate the microinstructions. 8



Implementation of the Microprogram

« Atypical implementation of a microcode controller:

— an explicit incrementer to compute the default
sequential next state and

— would place the microcode in a read-only
memory.

* The microinstructions are assembled directly from the
microprogram.

« The microprogram counter, which replaces the state
register of a finite state machine controller,
determines how the next microinstruction is chosen.

 The address select logic contains the dispatch tables
as well as the logic to select from among the W - —
alternative next states; the selection of the next o
microinstruction is controlled by the sequencing
control outputs from the control logic.

» The combination of the current microprogram
counter, incrementer, dispatch tables, and address

select logic forms a sequencer that selects the next l l ——*

microinstruction. N Y S /3
 The microcode storage may consist either of read- | Atcvems select g |+

only memory (ROM) or may be implemented by a

PLA. PLAs may be more efficient in VLSI veger peosde Skl

implementations, while ROMs may be easier to
change. 9



« Hardest Part of Control (and Implementation)
— EXception
 Unexpected event from within the processor
o (ex) arithmetic overflow
— Interrupt
 An exception that comes from outside of the processor
* (ex) I/O device seeking communication with the processor
« Confusion over the terms
— Most
* Interrupt=interrupt and/or exception
— MIPS convention
« EXxception = cause is either internal or external
* Interrupt = event is externally caused

10



Exceptions and Our Interests in this chapter

Type of Event Cause Exp/Int

IFO Device Request External Interrupt

Invoke O3S from User Program Internal Exception
Arithmetic Overflow Internal Exception
Using Undefined Instruction Internal Exception
Hardware Malfunctions Either Exp or Int

e Our interests
— Control Implementation for detecting two types of
exceptions
— EXxceptions that arise from the portions of the instruction
set we already have already discussed

 Importance of exceptions during the design of the control unit
— Detection of exceptional conditions
— Taking appropriate action

11



Exception Handling

« Two types of exceptions
— Execution of undefined instruction
— Arithmetic Overflow
 Basic Action of the machine upon exception condition

— Save the offending instruction in EPC (exception program
counter): 32-bit Register

— Transfer control to OS at some specified address
e (OS actions

— Initial action
* Providing some service to user program, or
« Taking some predefined action in response to an over flow, or
« Stopping the execution of the program and error reporting

— Next Action

 Terminate (or continue) execution using EPC (to determine where to
restart the execution)

12



Exception Control

 Exception Reason Finding
— 2 main methods used to communicate the reason for exception
— Cause Register (a status register) : MIPS approach
» A field indicates the reason for exception
— Vectored Interrupt
» Cause of exception determines the transfer address
* (ex)
— Undefined Instruction = 0000 0000
— Arithmetic Overflow - 0000 0020
 OS knows the cause of the exception by the address at which it is
initiated
 Addresses are separated by 32 bytes (or 8 instructions)
« Exception Control (in MIPS) for our case
— EPC: 32-bit register which holds the addr of the affected instr
— Cause: 32-hit register to record the cause of the exception
* Since we have only two causes
* Bit0=0 ->undefined instruction
e Bit0O->1 Arithmetic Overflow

13



Control Signals for Exception Handling

« Additional for the datapath
— 2 registers
« EPC
 Cause
— Control Lines
« EPCWrite
o CauseWrite
* IntCause : to set the low-order bit of the Cause register
— EXxception Address
* OS entry point for exception handling
« 0x8000 0180 (MIPS)
« 0x8000 0080 (MIPS Simulator)
e Writing PC value to EPC
— Since 4 is already added

— 4 must be subtracted before writing into EPC

14



Final Multicycle Datapath including Exception

R Cause\Write
[.-*' P LwTrite E-ﬂ!'ltrﬂ[ IntCause
3 P Cwirite EPCWrite
lorD  PCsrc
MemRead " ALLlop
Control _-5.. UsrcB
MemWirite _ _ALLlsn:n'-l
MemtoReg RegWrite
IR -
Write ., Reg
Dst

PC "IT Address N I-[. - _.:' | | Reaad Read
=9 1=l 2 F, = B
1 E Memgw H'__l I Ciata

Wemliata

o

Write
— [lata

Inst{20: 18]

Fead
HagZ
Inst] 150 =,
Instruction r't.:.l”

Regsiters

3 0= R
Regsiter s F‘-=I-.;t g
S’
"f-.-\"' Wlrite
Memary i |- Data
Data —.,]? y
Register =T A
o -HH\'.‘
! p
Inst[15:0] [ sign |
\ Ext |

Fead
Data

Fl

ALUout




How Control checks for exceptions

e Detection of Undefined Instruction

— When no next state is defined from state 1 for the
op value.

— Define the next state value for all op other than | w,
sw, O (R-Type), ], and beq as statelO.

* Detection of Arithmetic Overflow
— ALU includes logic to detect overflow
— “Overflow” signal is provided from ALU

— State 11 is assigned to this exception as the next
state from state 7

16



Complete FSM including exceptions

Instruction _———-

-

Fetch A MemRead

h T
/ ALUsrea=0 1 7 Y
l] f lorD=0 4 ,-'I ALUsrcA=0 :;IES:EI’DI.ICIE‘:IDI‘I
Start N AlUsrcB=01 | = ALUsrcB=11 | :
| ALUop=00 / | ALUop=00 IRegsiter Fetch
Y PCWrite N O 10—
. PCsre=00 - il SRy X
. e o ™, ——{OP=other} 7 intcauses0 ™
T = A ey T/ CauseWrite
(OP="LW") or (OP='SW")__— e =BEGY Br . [OP=J] I i
s (OP=R-type) .~ (OP EEElT-_E!_?nCh k"-..._ﬂJ-':l.mp | ALUsreB=01 |I
2 e ——+ Exec 8 . g - . | ALUop=11 |
- ~.. Mem E.’_ 4 ) I__." AL U srcA=] --._lI |". . | EPCWrite
/ ALUsrea=1 '\ Addr / ALUsreA=1 [ ALUsrcB=00 | R PCWrite
| ALUsreB=10 |Comp | ALUsrcB=00 | el 1 meRin . PCsre=11 _/
'\ ALUop=00 | " ALUop=10 \ riteCond / s SUERRENT —
y \ F xl'-"[.‘srr:=ﬂ1 iy —|—
\"-\._\__ ___..d:."' — _,—c"-. ---\.___ _[ __'_.-"'
3 jOP=LW) T (OP='SW e S
P e s ——RType 11 /IntCause=1
.'"#I'-'IemFtead \ Mem 5 7 MemWrite ", Mem KH piee " / CauseWrite
| lorD=1 | Access I lorD=1 \Access [ NEELEEL ALlsrcA=0 |
/ | .I I RegWrite | Drrarflow ALUsrcB=01 |
M \ Fi '.,_ Memmﬁeg%j ALUop=01 |
]’ i iy ", _ EPCWrite /
i e Y PCWrite '
4.-__,- _-\'"-\._ MEm L PCsro=11
/RegDst=0 -M__.Fiead Dverflow e
| RegWrite ' 1 ]

\ MemtoReg=1

.""

- o

17



Maximally vs. Minimally Encoded

 No encoding:
— 1 bit for each datapath operation
— faster, requires more memory (logic)
— used for Vax 780 — an astonishing 400K of memory!
« Lots of encoding:
— send the microinstructions through logic to get control signals
— uses less memory, slower
« Historical context of CISC:
— Too much logic to put on a single chip with everything else
— Use a ROM (or even RAM) to hold the microcode
— It’s easy to add new instructions

18



Historical Perspective

* Inthe ‘60s and ‘70s microprogramming was very important for
Implementing machines

 This led to more sophisticated ISAs and the VAX

* Inthe ‘80s RISC processors based on pipelining became popular
« Pipelining the microinstructions is also possible!

* Implementations of IA-32 architecture processors since 486 use:

— “hardwired control” for simpler instructions
(few cycles, FSM control implemented using PLA or random logic)

— “microcoded control” for more complex instructions
(large numbers of cycles, central control store)

 The IA-64 architecture uses a RISC-style ISA and can be
Implemented without a large central control store

19



Chapter 5 Summary

If we understand the instructions...
We can build a simple processor!

If instructions take different amounts of time, multi-cycle is better

Datapath implemented using:
— Combinational logic for arithmetic

— State holding elements to remember bits

Control implemented using:
— Combinational logic for single-cycle implementation

— Finite state machine for multi-cycle implementation

20





