
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM



2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy



3

Chapter Five
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Multi-Cycle Implementation
• A Solution:

– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:
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Overview of Multi-Cycle Approach (1)

• Overview
– step:  1 clock cycle in execution
– Functional units allowed to be used more than once per instruction (as 

long as it is used on different clock cycle)
– Single memory unit (instruction and data)
– Single ALU (rather than ALU and two ADDs)
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Overview of Multi-Cycle Approach (2)
• Overview (-continued)

– One of more registers are added after every functional unit to hold the 
output until the value is used in a subsequent clock cycle

– At the end of clock, all data that is used in the subsequent clock 
cycle must be stored in a state element.

• Data used by subsequent instructions in a later clock cycle is stored 
into one of:

– Register File
– PC
– Memory

• Data used by the same instruction in a later clock must be stored into 
one of the added registers

– Added Temporary Registers
• IR (Instruction Register): save for instruction read
• MDR( Memory Data Register): save for data read
• A (Register A): register operand read from register file
• B (Register B): register operand read from register file
• ALUout (ALU output register): hold the output of ALU
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Multiplxor for Multi-Cycle Approach

• Single Memory –Mem (from ALUout)/Inst (from PC))
• IR needs to hold the instruction until the end of execution
• Single ALU
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Control Signals for Multi-Cycle Datapath

• Jump instr is still not included -PC
• Controlled branch is not included – PC
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Complete Multipath Datapath and Control unit
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Control Signal Explanation (Tables. P.324)
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Action of Control Signals (1-bit control signals)
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Action of Control Signals (2-bit signals)
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Instructions from ISA perspective – Clock Cycle

• What should happen in each clock cycle of the multicycle execution?
• Consider each instruction from perspective of ISA.
• Example:  

– The add instruction changes a register.  
– Register specified by bits 15:11 of instruction.  
– Instruction specified by the PC.  
– New value is the sum (“op”) of two registers.  
– Registers specified by bits 25:21 and 20:16 of the instruction

Reg[Memory[PC][15:11]] <=
Reg[Memory[PC][25:21]] op

Reg[Memory[PC][20:16]]

– In order to accomplish this we must break up the instruction.
(kind of like introducing variables when programming)
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Breaking down an instruction

• ISA definition of arithmetic:

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
Reg[Memory[PC][20:16]]

• Could break down to:
– IR <= Memory[PC]

– A <= Reg[IR[25:21]]

– B <= Reg[IR[20:16]]

– ALUOut <= A op B

– Reg[IR[20:16]] <= ALUOut

• We forgot an important part of the definition of arithmetic!
– PC <= PC + 4
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Idea behind multicycle approach

• We define each instruction from the ISA perspective  
• Break it down into steps following our rule that data flows through 

at most one major functional unit  (e.g., balance work across 
steps)

• Introduce new registers as needed  (e.g, A, B, ALUOut, MDR, etc.)

• Finally try and pack as much work into each step 
(avoid unnecessary cycles)

while also trying to share steps where possible
(minimizes control, helps to simplify solution)

• Result:  Our book’s multicycle Implementation!
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• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps
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• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer Language"

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1:  Instruction Fetch
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• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

• We aren't setting any control lines based on the instruction type 
(we are busy "decoding" it in our control logic)

Step 2:  Instruction Decode and Register Fetch
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• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

• R-type:

ALUOut <= A op B;

• Branch:

if (A==B) PC <= ALUOut;

Step 3 (instruction dependent)
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• Loads and stores access memory

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

• R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)
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• Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Write-back step
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Summary
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• Loads (5), Stores(4), ALU instructions (4), Branches(3), Jumps(3)
• How many cycles will it take to execute this code? 

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions
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• Finite state machines-A Sequential Logic Function
– a set of states and 
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state) 
– If the output function can depend on both the current state and the 

current input, the machine is called a Mealy machine.

Specification of the Multicycle Control – Finite 
State Machine (FSM) approach
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FSM Example - controlling a traffic light
• Our example concerns the control of a traffic light at an 

intersection of a north-south route and an east-west route. For 
simplicity, we will consider only the green and red lights. We want 
the lights to cycle no faster than 30 seconds in each direction, so 
we will use a 0.033 Hz clock so that the machine cycles between 
states at no faster than once every 30 seconds.

• There are two output signals:
– NSlite: When this signal is asserted, the light on the north-

south road is green; when this signal is deasserted the light on 
the north-south road is red.

– EWlite: When this signal is asserted, the light on the east-west 
road is green; when this signal is deasserted the light on the 
east-west road is red.

• There are two inputs: NScar and EWcar.
– NScar: Indicates that a car is over the detector placed in the 

roadbed in front of the light on the north-south road (going 
north or south).

– EWcar: Indicates that a car is over the detector placed in the 
roadbed in front of the light on the east-west road (going east 
or west).
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FSM Example - continued
• The traffic light should change from one direction to the other only 

if a car is waiting to go in the other direction; otherwise, the light 
should continue to show green in the same direction as the last car 
that crossed the intersection.

• To implement this simple traffic light we need two states:
– NSgreen: The traffic light is green in the north-south direction.
– EWgreen: The traffic light is green in the east-west direction.
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FSM Example - Continued
• the output function:

• Graphical Representation
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FSM Example – Verilog version
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Review:  finite state machines

• Example:  

Appendix B. 37 A friend would like you to build an “electronic eye” 
for use as a fake security device.  The device consists of three lights lined 
up in a row, controlled by the outputs Left, Middle, and Right, which, if 
asserted, indicate that a light should be on.  Only one light is on at a 
time, and the light “moves” from left to right and then from right to left, 
thus scaring away thieves who believe that the device is monitoring their 
activity.  Draw the graphical representation for the finite state machine 
used to specify the electronic eye.  Note that the rate of the eye’s 
movement will be controlled by the clock speed (which should not be too 
great) and that there are essentially no inputs.
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• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve accumulated to specify a finite state 
machine
– specify the finite state machine graphically, or
– use microprogramming

• Implementation can be derived from specification

FSM - Implementing the Control
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Graphical Specification of FSM
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Graphical Specification of FSM-Instruction Fetch 
and Decode

• State 0
• State 1
• 4 Classes of 

instruction
– Mem ref
– R-type
– Beq
– Jump
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Graphical Specification of FSM-Mem Reference 
Instructions
• 4 States
• State 2

– Compute 
Memory 
Address

– In1: A Reg
– In2: Sign-

Ext
– Out: ALUout

• State 3
– LW
– Mem Addr 

from ALU
– State 4

• Write to 
Reg

• State 5
– SW
– Mem Addr 

from ALU
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Graphical Specification of FSM- R-type 
Instructions
• 2 States
• State 6

– In: 2 Regs
• State 7

– Register 
file to write

– Rd as 
destination

– ALUout is 
the source 
of the 
value to 
write into 
the 
register file
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Graphical Specification of FSM- beq Instructions

• 1 State
• State 8

– Compare 
reg A and 
reg B 
(read Zero 
output of 
ALU)

– PC set by 
the the 
ALUout
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Graphical Specification of FSM- Jump Instruction

• 1 State
• State 9

– Lower 26 
bits of IR

– 00 for 
lower 
order bits

– Concatena
ted with 
upper 4bits 
of PC
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Finite State Machine Control – Moore Machine
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Logic Equations
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• ROM = "Read Only Memory"
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m-bits, we can address 2m entries in the ROM.
– our outputs are the bits of data that the address points to.

m is the "height", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1
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• How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

• How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

• ROM is 210 x 20 = 20K bits    (and a rather unusual size)

• Rather wasteful, since for lots of the entries, the outputs are the 
same

— i.e., opcode is often ignored

ROM Implementation
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Truth Tables for Control Signals
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Truth Tables for Next-States
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Truth Table for 16 Control Signals
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Tables for ROM implementation
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PLA Implementation

• 17 unique Minterms
– 10 depends only on 

current states
– 7 on combination of Op 

field and current-state 
bits

• Total Size of PLA
– (#inx#minterm) + 

(#outx#minterm) = 
(10x17)+(20x17) = 510
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• Break up the table into two parts
— 4 state bits tell you the 16 outputs,    24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits,  210 x 4 bits of ROM
— Total:  4.3K bits of ROM

• PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

• Size is (#inputs × #product-terms) + (#outputs × #product-terms)
For this example  =  (10x17)+(20x17) = 510 PLA cells

• PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA




