
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM

2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy

3

Chapter Five

The Processor: Detapath and Control

Part B

4

Multi-Cycle Implementation
• A Solution:

– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:

5

Overview of Multi-Cycle Approach (1)

• Overview
– step: 1 clock cycle in execution
– Functional units allowed to be used more than once per instruction (as

long as it is used on different clock cycle)
– Single memory unit (instruction and data)
– Single ALU (rather than ALU and two ADDs)

6

Overview of Multi-Cycle Approach (2)
• Overview (-continued)

– One of more registers are added after every functional unit to hold the
output until the value is used in a subsequent clock cycle

– At the end of clock, all data that is used in the subsequent clock
cycle must be stored in a state element.

• Data used by subsequent instructions in a later clock cycle is stored
into one of:

– Register File
– PC
– Memory

• Data used by the same instruction in a later clock must be stored into
one of the added registers

– Added Temporary Registers
• IR (Instruction Register): save for instruction read
• MDR(Memory Data Register): save for data read
• A (Register A): register operand read from register file
• B (Register B): register operand read from register file
• ALUout (ALU output register): hold the output of ALU

7

Multiplxor for Multi-Cycle Approach

• Single Memory –Mem (from ALUout)/Inst (from PC))
• IR needs to hold the instruction until the end of execution
• Single ALU

8

Control Signals for Multi-Cycle Datapath

• Jump instr is still not included -PC
• Controlled branch is not included – PC

9

Complete Multipath Datapath and Control unit

10

Control Signal Explanation (Tables. P.324)

11

Action of Control Signals (1-bit control signals)

12

Action of Control Signals (2-bit signals)

13

Instructions from ISA perspective – Clock Cycle

• What should happen in each clock cycle of the multicycle execution?
• Consider each instruction from perspective of ISA.
• Example:

– The add instruction changes a register.
– Register specified by bits 15:11 of instruction.
– Instruction specified by the PC.
– New value is the sum (“op”) of two registers.
– Registers specified by bits 25:21 and 20:16 of the instruction

Reg[Memory[PC][15:11]] <=
Reg[Memory[PC][25:21]] op

Reg[Memory[PC][20:16]]

– In order to accomplish this we must break up the instruction.
(kind of like introducing variables when programming)

14

Breaking down an instruction

• ISA definition of arithmetic:

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
Reg[Memory[PC][20:16]]

• Could break down to:
– IR <= Memory[PC]

– A <= Reg[IR[25:21]]

– B <= Reg[IR[20:16]]

– ALUOut <= A op B

– Reg[IR[20:16]] <= ALUOut

• We forgot an important part of the definition of arithmetic!
– PC <= PC + 4

15

Idea behind multicycle approach

• We define each instruction from the ISA perspective
• Break it down into steps following our rule that data flows through

at most one major functional unit (e.g., balance work across
steps)

• Introduce new registers as needed (e.g, A, B, ALUOut, MDR, etc.)

• Finally try and pack as much work into each step
(avoid unnecessary cycles)

while also trying to share steps where possible
(minimizes control, helps to simplify solution)

• Result: Our book’s multicycle Implementation!

16

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps

17

• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer Language"

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

18

• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

• We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

19

• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

• R-type:

ALUOut <= A op B;

• Branch:

if (A==B) PC <= ALUOut;

Step 3 (instruction dependent)

20

• Loads and stores access memory

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

• R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)

21

• Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Write-back step

22

Summary

23

• Loads (5), Stores(4), ALU instructions (4), Branches(3), Jumps(3)
• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions

24

• Finite state machines-A Sequential Logic Function
– a set of states and
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state)
– If the output function can depend on both the current state and the

current input, the machine is called a Mealy machine.

Specification of the Multicycle Control – Finite
State Machine (FSM) approach

25

FSM Example - controlling a traffic light
• Our example concerns the control of a traffic light at an

intersection of a north-south route and an east-west route. For
simplicity, we will consider only the green and red lights. We want
the lights to cycle no faster than 30 seconds in each direction, so
we will use a 0.033 Hz clock so that the machine cycles between
states at no faster than once every 30 seconds.

• There are two output signals:
– NSlite: When this signal is asserted, the light on the north-

south road is green; when this signal is deasserted the light on
the north-south road is red.

– EWlite: When this signal is asserted, the light on the east-west
road is green; when this signal is deasserted the light on the
east-west road is red.

• There are two inputs: NScar and EWcar.
– NScar: Indicates that a car is over the detector placed in the

roadbed in front of the light on the north-south road (going
north or south).

– EWcar: Indicates that a car is over the detector placed in the
roadbed in front of the light on the east-west road (going east
or west).

26

FSM Example - continued
• The traffic light should change from one direction to the other only

if a car is waiting to go in the other direction; otherwise, the light
should continue to show green in the same direction as the last car
that crossed the intersection.

• To implement this simple traffic light we need two states:
– NSgreen: The traffic light is green in the north-south direction.
– EWgreen: The traffic light is green in the east-west direction.

27

FSM Example - Continued
• the output function:

• Graphical Representation

28

FSM Example – Verilog version

29

Review: finite state machines

• Example:

Appendix B. 37 A friend would like you to build an “electronic eye”
for use as a fake security device. The device consists of three lights lined
up in a row, controlled by the outputs Left, Middle, and Right, which, if
asserted, indicate that a light should be on. Only one light is on at a
time, and the light “moves” from left to right and then from right to left,
thus scaring away thieves who believe that the device is monitoring their
activity. Draw the graphical representation for the finite state machine
used to specify the electronic eye. Note that the rate of the eye’s
movement will be controlled by the clock speed (which should not be too
great) and that there are essentially no inputs.

30

• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve accumulated to specify a finite state
machine
– specify the finite state machine graphically, or
– use microprogramming

• Implementation can be derived from specification

FSM - Implementing the Control

31

Graphical Specification of FSM

32

Graphical Specification of FSM-Instruction Fetch
and Decode

• State 0
• State 1
• 4 Classes of

instruction
– Mem ref
– R-type
– Beq
– Jump

33

Graphical Specification of FSM-Mem Reference
Instructions
• 4 States
• State 2

– Compute
Memory
Address

– In1: A Reg
– In2: Sign-

Ext
– Out: ALUout

• State 3
– LW
– Mem Addr

from ALU
– State 4

• Write to
Reg

• State 5
– SW
– Mem Addr

from ALU

34

Graphical Specification of FSM- R-type
Instructions
• 2 States
• State 6

– In: 2 Regs
• State 7

– Register
file to write

– Rd as
destination

– ALUout is
the source
of the
value to
write into
the
register file

35

Graphical Specification of FSM- beq Instructions

• 1 State
• State 8

– Compare
reg A and
reg B
(read Zero
output of
ALU)

– PC set by
the the
ALUout

36

Graphical Specification of FSM- Jump Instruction

• 1 State
• State 9

– Lower 26
bits of IR

– 00 for
lower
order bits

– Concatena
ted with
upper 4bits
of PC

37

Finite State Machine Control – Moore Machine
PC W rite

PCW riteCond
Io rD

M em toR eg
PC S ource
ALU O p
ALU SrcB
ALU SrcA
R egW rite
R egD st

N S3
N S2
N S1
N S0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S3 S2 S1 S0

S ta te regis te r

IR W rite

M em R ead
M em W rite

Instruction reg is ter
opcode fie ld

Ou tputs

Con tro l log ic

Inputs

38

Logic Equations

39

• ROM = "Read Only Memory"
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m-bits, we can address 2m entries in the ROM.
– our outputs are the bits of data that the address points to.

m is the "height", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

40

• How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

• How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

• ROM is 210 x 20 = 20K bits (and a rather unusual size)

• Rather wasteful, since for lots of the entries, the outputs are the
same

— i.e., opcode is often ignored

ROM Implementation

41

Truth Tables for Control Signals

42

Truth Tables for Next-States

43

Truth Table for 16 Control Signals

44

Tables for ROM implementation

45

PLA Implementation

• 17 unique Minterms
– 10 depends only on

current states
– 7 on combination of Op

field and current-state
bits

• Total Size of PLA
– (#inx#minterm) +

(#outx#minterm) =
(10x17)+(20x17) = 510

46

• Break up the table into two parts
— 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 210 x 4 bits of ROM
— Total: 4.3K bits of ROM

• PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

• Size is (#inputs × #product-terms) + (#outputs × #product-terms)
For this example = (10x17)+(20x17) = 510 PLA cells

• PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA

