
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM

2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy

3

Chapter Five

The Processor: Detapath and Control

Part A

4

Five Classic Components of a Computer

5

Overview

• Performance Key Factors
– Instruction count
– Clock cycle time
– CPI

• What determines the Instruction Count
– Compiler
– instruction set

• What determines the Clock Cycle Time and CPI
– Implementation of the processor

• Focus of the chapter
– Implementation principle and technique of MIPS
– Datapath and control

6

• Implementation of the MIPS - Simplified version
– memory-reference instructions: lw, sw

– arithmetic-logical instructions: add, sub, and, or, slt

– control flow instructions: beq, j

• Generic Implementation (for all three types):

– Send PC to Memory that contains the code
– Fetch the instruction from that memory
– Read registers using the fields of the instruction
– Execute the Instruction depending on the instruction class

• Common Actions (across different instructions)
– Step 1:

• Use ALU for operation execution after reading registers
• Use ALU for address calculation (for memory-reference instr)

– Step 2
• Memory access to load or store
• write back to register

The Processor: Datapath & Control

7

• Abstract / Simplified View:
• Two types of functional units:

– elements that operate on data values (combinational)
– elements that contain state (sequential)

High Level view of MIPS Implementation

8

• No multiplexer (or data selector)
– Data lines to PC
– Data lines to Registers
– Cannot be wired together

• No Control
– Data memory read (on load) or write (on store)
– read from and write to register

What’s missing here in the High Level view of
MIPS Implementation

9

MIPS Implementation with necessary elements

• What comes next?
– Element and Components
– Building Datapath with major components
– Control

10

• State Elements
– Internal Storage to indicate a state (sequential)
– 2 inputs (data and clock) and 1 output
– Unclocked vs. Clocked
– Clocks used in synchronous logic

• when should an element that contains state be updated?

Logic Design Convention

Clock period Rising edge

Falling edge
cycle time

11

Synchronous Digital System

• An edge triggered methodology
• Typical execution:

– read contents of some state elements,
– send values through some combinational logic
– write results to one or more state elements

State
element

1

State
element

2
Combinational logic

Clock cycle

12

Datapath Elements - for instruction

• Components required to execute each class of MIPS instruction
• Instruction Memory - instruction store
• PC - hold address of the current instruction
• Adder - Increment the PC to the address of next instruction

• Fetching Instructions and Incrementing PC by 4

13

Elements for R-type Instructions

• R-type instructions
– add, sub, and, or, etc
– Read two registers
– perform ALU operation
– Write the result

• Needed Elements
– Register File

• 32 registers
• 2 read ports
• 1 write port

– ALU
• Operation on the values of read from registers
• two 32-bit inputs
• one 32-bit output
• 1-bit signal if output is zero
• 4-bit ALU control signal

14

Elements for Load and Store

• Load and Store
– lw $t1, offset($t2)

– Memory address = base_addr [$t2] + 16-bit signed offset
– Registers are involved

• Elements Needed
– Data Memory
– Register File
– ALU
– Sign-Ext unit

• extension of 16-bit offset filed into 32-bit signed value

15

Datapath for Branch Target Address

• beq $t1, $t2, offset : branch to PC+offset if [$t1]=[$t2]
– 3 operands
– 2 registers
– 16-bit offset
– Byte offset into Word offset (x4)

16

Building a Datapath

• Combination of datapath components into a single datapath
• Add control
• Attempt to execute all instructions in one clock cycle

– no datapath resource can be used more than once per
instruction

– any element needed more than once must be duplicated
– Separation of instruction memory from data memory

• Share of datapath elements for different instruction flows
– multiplexor
– control signal

17

Building a Datapath - Example

• Q: Build a datapath for the operational portion of the memory
reference and arithmetic-logical instructions that uses a single
register file and a single ALU to handle both types of instructions,
adding any necessary mux.

• Analysis:
– ALU

• R-type -- for two registers
• Mem - add calculation (second input is sign-ext)

– Destination Reg
• T-type -- from ALU
• Mem -- from Mem

• Approach
– 2 different sources for (2nd) ALU input ---->MUX
– 2 different sources for data stored into register file --->MUX

18

Datapath for MEM instr and R-type instr

19

Datapath for MEM, R-type, and Branch Instr

20

A Simple Implementation Scheme

• Simplest possible implementation of MIPS subset using the datapath we
discussed before plus simple control function

• Covers load (lw), store (sw), branch equal(beq), add (add), sub (sub),
and (and), or(or), set on less than (slt) only --”subset”

• ALU Control (with 4 control inputs)
0000 and

0001 or

0010 add

0110 sub

0111 slt

1100 nor

• Generation of 4-bit ALU control is not simple--what’s involving?

– 2-bit ALUop (“control” bit) --- Instruction classes

– 6-bit function filed (in machine code)

– 4-bit info from 8 bits?

21

ALUop and Function Fields

22

Truth Table for ALU control bits

23

Main Control Unit

• Schematic for ALU operation

• Design of Main Control Unit
– Check the instruction formats first

24

• Observation of the Instruction Formats
– R type

• Opcode: 0
• Sources: rs and rt
• Destination: rd

– Load/Store Type
• Opcode: 35 (load) or 43 (store)
• Base addr: rs
• Destination: rt (load)
• Source: rs(store)

– Branch Type
• Opcode: 4
• Base addr: rs
• Destination: rt

Main Control Unit Datapath

25

Control Lines

Control Lines (also for beq)

27

Operation of Datapath for add $t1, $t2, $t3

28

Operation of Datapath for lw $t1, offset($t2)

29

Operation of Datapath for beq $t1, $t2,offset

30

Control Implementation

• Simple combinational logic (truth tables)

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block
R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

31

Addition Jump Instruction to Datapath

• Lower 2 bits of jump address is always 00 (as in branch) as the
last two bits. Why? Word address --> Byte address

• 26-bit address from immediate field in the middle
• Upper 4 bits of the current (PC+4) occupies the upper 4 bits of the

address
• Summary for jump address [31:0]

– jump addr[31:0]= {PC+4} [31:28]//Instr[25:0]//00

op 26-bit address

32

Final Datapath Including R, L, Branch, and Jump

33

R-type instruction Flow

34

Load Word Flow

35

Branch Instruction Flow

36

Jump Instruction Flow

37

Single Cycle Implementation--Why Not Used

• So far our implementation is single-cycle design
• Why not used in modern design? Inefficiency!

– Clock cycle length must be the same for every instruction
– CPI =1 for every instruction
– Clock cycle is determined by the longest possible path in the

machine
– Load instruction uses five functional units in series

• Instruction Memory
• Register File
• ALU
• Data Memory
• Register File

– Several other instruction classes could run in a shorter cycle.
• Each functional unit can be used only once per clock ---some

functional units must be duplicated. ---Hardware cost!

38

Performance of Single Cycle Machine
• Performance comparison of two approaches for a program run

– A: Every instruction operates in 1 clock cycle of fixed length
– B: Every instruction executes in 1 clock cycle using a variable-

length clock (only as long as it needs to be)
• Conditions

– Operational times
• memory (200ps)
• ALU and adders (100ps)
• Register file access (50ps)
• All others (Negligible)

– A program has the following instruction mix:
• load (25%)
• store (10%)
• ALU instructions (45%)
• Branch (15%)
• Jump (5%)

39

Performance Comparison

40

Comparison, Problem, and an Alternative

• Approach A:
– single clock cycle time= 600ps
– Total execution time = 600px 1.0 = 600 ps

• Approach B:
– Variable clock cycle times
– Total execution time

= 600x0.25 + 550x0.1 + 400x0.45 + 350x0.15 + 200x0.5
= 447.5 ps

• Performance Comparison
– 600/447.5=1.34

• Approach B is faster, but
• Implementation of variable clock cycle length for every instruction

is extremely difficult
• Solution: Multi-cycle Implementation

– shorter clock cycle for less work class
– number of clock cycles for different class

