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Chapter 4 - Part B

Transition to Chapter 5

Review on ALU




Lets Build a Processor

« Almost ready to move into chapter 5 and start
building a processor

 let’s review Boolean Logic and build the ALU we’ll
need
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Review: Boolean Algebra & Gates

 Problem: Consider alogic function with three inputs: A, B,
and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output Fis true only if all three inputs are true

« Show the truth table for these three functions.
« Show the Boolean equations for these three functions.

« Show an implementation consisting of inverters, AND, and
OR gates.



An ALU (arithmetic logic unit)

 Let's build an ALU to support the andi and or i .
Instructions — —
— we'll just build a 1 bit ALU, and use 32 of them |
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 Possible Implementation (sum-of-products):




Review: The Multiplexor

o Selects one of the inputs to be the output, based
on a control input
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e Lets build our 1-bit ALU using a MUX:
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Different Implementations

 Not easy to decide the “best” way to build something
— Don't want too many inputs to a single gate
— Don’t want to have to go through too many gates
— for our purposes, ease of comprehension is important

e Let'slook at a 1-bit Adder (ALU for addition):
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e How could we build a 1-bit ALU for add, and, and or?
e How could we build a 32-bit ALU?



Building a 32 bit ALU
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A 1-bit ALU that performs AND, OR, and addition
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A 32-bit ALU constructed from 32 1-bit ALUs.



What about subtraction (a—Db) ?

« Two's complement approach: just negate b and
add.

e How do we ne Sl

Sinvert Operation

A very clever solution:
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A 1-hit ALU that performs AND, OR, and addition on a and b or a and b.
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Adding a NOR function

« Can also choose to invert a. How do we get “a NOR b” ?

Alrvert Operation
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A 1-bit ALU that performs AND, OR, and addition on a and b or a and b.
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Final ALU

Bregate Orperation
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Conclusion

« We can build an ALU to support the MIPS instruction set
— key idea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU

 Important points about hardware
— all of the gates are always working

— the speed of a gate is affected by the number of inputs to the
gate

— the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)
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