WWW.MWFTR.C

EECE 417 Computer Systems Architecture

Department of Electrical and Computer
Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM

Computer Organization and Design (3" Ed)

-The Hardware/Software Interface

)Y

David A. Patterson
John L. Hennessy

Chapter 4 - Part B

Transition to Chapter 5

Review on ALU

Lets Build a Processor

« Almost ready to move into chapter 5 and start
building a processor

 let’s review Boolean Logic and build the ALU we’ll
need

operation

a t
ﬁ;)
32 ALU
> [result
32
ﬁ;)
32

b

Review: Boolean Algebra & Gates

 Problem: Consider alogic function with three inputs: A, B,
and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output Fis true only if all three inputs are true

« Show the truth table for these three functions.
« Show the Boolean equations for these three functions.

« Show an implementation consisting of inverters, AND, and
OR gates.

An ALU (arithmetic logic unit)

 Let's build an ALU to support the andi and or i .
Instructions — —
— we'll just build a 1 bit ALU, and use 32 of them |

operation opia | b jres '

a —> |, result

 Possible Implementation (sum-of-products):

Review: The Multiplexor

o Selects one of the inputs to be the output, based
on a control input

D
X[° FD_D

e Lets build our 1-bit ALU using a MUX:

Operation

Different Implementations

 Not easy to decide the “best” way to build something
— Don't want too many inputs to a single gate
— Don’t want to have to go through too many gates
— for our purposes, ease of comprehension is important

e Let'slook at a 1-bit Adder (ALU for addition):

canvin | a | b | camyim | Camyout | Sum |
I 0 0 i [@ a O+ 0+ 0 = O,
a i) i O+0+1 =01,
a 0 1 Q 1 D+1+0=01,,
0 1 1 1 a D+l+1=10,,
- 1 a a 1 1+0+ 0= 01
1 a 1 i 7 1+0+1=10,,
& 1 1 [i] i [i] 1414+ 0=10,,
_ 1 1 1 1 1 1+1+1m=11,,
= + . + .
T Cout a b a CI n b CI n
CarmyOut —_
v sum = a xor b xor c,

In

e How could we build a 1-bit ALU for add, and, and or?
e How could we build a 32-bit ALU?

Building a 32 bit ALU

Operation
Carryln
a —1e— Y /J\
VAR
._
1
]
+ 2
h —+—&—» \ /
¥
CarryOut

= Result

A 1-bit ALU that performs AND, OR, and addition

Opearation

Carryln
—————
l 1
a0 —m Carryln
h0 ALLID = ResultD
CarryOut
—————

L ¥

a1 . Carryln
AL = Resultl
CarryOut

01 —

————

a7 — m Carryln
ALLIZ = Resultd
CarryOut

' |
| ——

a3l—w Carryln
ALU31 » Result31

L ——

03—

A 32-bit ALU constructed from 32 1-bit ALUs.

What about subtraction (a—Db) ?

« Two's complement approach: just negate b and
add.

e How do we ne Sl

Sinvert Operation

A very clever solution:

b

._
i } 1 » Result
-
¥

CarryOut

A 1-hit ALU that performs AND, OR, and addition on a and b or a and b.

10

Adding a NOR function

« Can also choose to invert a. How do we get “a NOR b” ?

Alrvert Operation

ginvert Carryln |

-_
1 - eyt
.
¥

CarryOult

A 1-bit ALU that performs AND, OR, and addition on a and b or a and b.

11

Final ALU

Bregate Orperation

.J‘-.rw-;-:r1l l

*_
} I l 3
all—= Carryln T
esultd
[} —- ALLID
I —
CarryOut Skl
» L]
il i & 1 i Sl
al—wm Carryln Result! > ALLL = Fosull
L
Bl —m ALLIM e=y L e (i
() —- Less
CarryOut Zero by —
'—'ﬁ hi
L F L -'u ‘BT
CarryC)
aZz —w Carryln o
b2 —= ALUZ resulLs
(1 —- Less
CarryOut
SR LS F—
Result31 I — e
ail—s{ Carryln = TR ——
t]-.‘!1_-' .'|1'LL._|31 SEt I 1 Sl ool e 1
0 — Less » Overflow I = HOH

The final 32-bit ALL.

12

Conclusion

« We can build an ALU to support the MIPS instruction set
— key idea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU

 Important points about hardware
— all of the gates are always working

— the speed of a gate is affected by the number of inputs to the
gate

— the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)

13

