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Transition to Chapter 5

Chapter 4 - Part B

Transition to Chapter 5

Review on ALU
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Lets Build a Processor

• Almost ready to move into chapter 5 and start 
building a processor

• let’s review Boolean Logic and build the ALU we’ll 
need
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• Problem:  Consider a logic function with three inputs:  A, B, 
and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

• Show the truth table for these three functions.

• Show the Boolean equations for these three functions.

• Show an implementation consisting of inverters, AND, and 
OR gates.

Review:  Boolean Algebra & Gates
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• Let's build an ALU to support the andi and ori
instructions
– we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):
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• Selects one of the  inputs to be the output, based 
on a control input

• Lets build our 1-bit ALU using a MUX:

Review:  The Multiplexor
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• Not easy to decide the “best” way to build something
– Don't want too many inputs to a single gate
– Don’t want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit Adder (ALU for addition):

• How could we build a 1-bit ALU for add, and, and or?
• How could we build a 32-bit ALU?

Different Implementations

cout = a b + a cin + b cin
sum = a xor b xor cin
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Building a 32 bit ALU
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• Two's complement approach:  just negate b and 
add.

• How do we negate?

• A very clever solution:

What about subtraction  (a – b)  ?
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Adding a NOR function

• Can also choose to invert a.   How do we get “a NOR b” ?
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Final ALU 
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Conclusion

• We can build an ALU to support the MIPS instruction set
– key idea:  use multiplexor to select the output we want
– we can efficiently perform subtraction using two’s complement
– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working
– the speed of a gate is affected by the number of inputs to the 

gate
– the speed of a circuit is affected by the number of gates in series

(on the “critical path” or the “deepest level of logic”)




