
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer
Engineering

Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM

2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy

3

Transition to Chapter 5

Chapter 4 - Part B

Transition to Chapter 5

Review on ALU

4

Lets Build a Processor

• Almost ready to move into chapter 5 and start
building a processor

• let’s review Boolean Logic and build the ALU we’ll
need

32

32

32

operation

result

a

b

ALU

5

• Problem: Consider a logic function with three inputs: A, B,
and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

• Show the truth table for these three functions.

• Show the Boolean equations for these three functions.

• Show an implementation consisting of inverters, AND, and
OR gates.

Review: Boolean Algebra & Gates

6

• Let's build an ALU to support the andi and ori
instructions
– we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

b
a

operation

result

op a b res

An ALU (arithmetic logic unit)

7

• Selects one of the inputs to be the output, based
on a control input

• Lets build our 1-bit ALU using a MUX:

Review: The Multiplexor

8

• Not easy to decide the “best” way to build something
– Don't want too many inputs to a single gate
– Don’t want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit Adder (ALU for addition):

• How could we build a 1-bit ALU for add, and, and or?
• How could we build a 32-bit ALU?

Different Implementations

cout = a b + a cin + b cin
sum = a xor b xor cin

9

Building a 32 bit ALU

10

• Two's complement approach: just negate b and
add.

• How do we negate?

• A very clever solution:

What about subtraction (a – b) ?

11

Adding a NOR function

• Can also choose to invert a. How do we get “a NOR b” ?

12

Final ALU

13

Conclusion

• We can build an ALU to support the MIPS instruction set
– key idea: use multiplexor to select the output we want
– we can efficiently perform subtraction using two’s complement
– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working
– the speed of a gate is affected by the number of inputs to the

gate
– the speed of a circuit is affected by the number of gates in series

(on the “critical path” or the “deepest level of logic”)

