
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM

2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy

3

Chapter Three

Arithmetic for Computers - Part B

4

Floating Point

• Reals
• We need a way to represent reals

– numbers with fractions, e.g., 3.1416 (decimal point)
– very small numbers, e.g., .000000001 or 1.0x10-9

– very large numbers, e.g., 3.15576 ×××× 109

• Scientific Notation & Normalized Scientific Notation (no leading 0)
– 1.0x10-9 (normalized)
– 0.1x10-8 (Not normalized)
– 10.0x10-10 (Not normalized)

• Scientific Notation for Binary Numbers
– 1.0x2-1 = 0.1 (binary point)
– 0.01 ---> 1.0x2-2

– 100000 ---> 1.0x25

• Why the term “floating point”?
– computer arithmetic that supports numbers in which binary point is not

fixed

5

Floating-Point Representation

• Representation:
– sign, exponent, significand: (–1)sign ×××× significand ×××× 2exponent

– more bits for significand gives more accuracy
– more bits for exponent increases range
– But we have fixed word size

• IEEE 754 floating point standard:
– single precision: 8 bit exponent, 23 bit significand

– double precision: 11 bit exponent, 52 bit significand

6

Floating-Point Representation

• “Fraction” vs. “significand”
– Significand: 24 bit number (including the leading 1)
– fraction: 23 bit number (without the leading 1)

• Leading “1” bit of significand is implicit
– What if just 0 ---> then exponent 0

• IEEE 754 Encoding of floating-point numbers

7

Floating-Point

• Exponent is “biased” to make sorting easier
– exponent comes first, then fraction later
– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision

• for positive and negative exponents
• 00000000 for most negative number
• 11111111 for most positive number
• exponent of 0 ---->127-->0111 1111
• exponent of 1 ---->127+1 --> 1000 0000
• exponent of -1 ---->127-1 --->0111 1110

• summary 1:value represented by a floating number is:
(–1)sign ×××× (1+(1+(1+(1+fraction) ×××× 2exponent – bias

• summary 2: representation of a value by the floating point notation:
(exponent+ bias)---->”exponent” (8-bit)

8

Floating Point Examples

• Reading a floating point number
– 0xC0A00000 = ?
– 1100 0000 1010 0000 0000 0000 0000 0000
– s < exp >< fraction >
– negative number with exp=129 and fraction=.01000000000000000
– - (1.01)x2(129-127) = -(1.01)x22 = -101 ---->-5
– EXAMPLE

• Convert the floating point numbers into a decimal numbers
• 0xAD100000 --->
• 0x24924000 ---->

• Conversion to a floating point number
– decimal: -.75 = - (½ + ¼)
– binary: -.11 = -1.1 x 2-1

– floating point: exponent = -1+127=126 = 01111110
– IEEE single precision: 1 01111110 10000000000000000000000

– Example

• 0.625 ----> floating Point

9

Floating Point Addition

• Decimal Number Case Illustration (up to 4 decimal digits)
– 9.999x101 + 1.610x10-1

• Step 1
– Align the number that has smaller exponent so that its

exponent matches the exponent of the larger number
– 1.610x10-1 --->0.01610x101 ---> 0.016x101 (only 4 digits)

• Step 2
– Addition of the significands (9.999 + 0.016=10.015)x101

• Step 3
– Normalization: 1.0015x102

• Step 4
– Rounding the number to 4 digits
– 1.002x102

10

Floating point addition block diagram

11

Floating Point Addition Example

• Floating point addition of 0.5 + (-0.4375) in binary version
• Step 0 - Floating Point Notation

– 0.5-->0.1=1.0x2-1

– -0.4375 --> -0.0111=-1.11x2-2

• Step 1 - Alignment with larger exponent
– 1.0x2-1

– -1.11x2-2=-0.111x2-1

• Step 2 - Addition of significands
– (1.0 + (-0.111))x2-1=0.001x2-1

• Step 3 - Normalization
– 0.001x2-1=1.000x2-4

• Step 4 - Rounding
– 1.000x2-4 --------->0.0625

12

Floating Point Multiplication

• Example First
– (1.11x1010)x(9.200x10-5)
– Limitation: 4 digits of significand and 2 digits for exponent

• Step 1 - Addition of two exponents
– 10+(-5)=5

• Step 2 - Multiplication of signifcands
– 1.11x9.200 --->1100x9200 (with decimal point six digits from the

right of the product)
– 10212000 ----> 10.2120000--->10.212x105.

• Step 3 - Normalization
– 10.212x105 = 1.0212x106.

• Step 4 - Rounding
– 1.0212x106-------->1.021x106.

• Step 5 - Sign
– + 1.021x106 (both have the same sign)

13

Floating Point Multiplication Example

• Floating point multiplication of 0.5 and -0.4375 in binary version
• Step 0 - floating point notation

– 0.5 ---> 1.000x2-1

– -0.4375 ---->-1.110x2-2

• Step 1 - Adding the exponents
– -1+(-2)= - 3

• Step 2 - Multiplying the significands
– 1000x1110 (with binary points sixth digit from right) = 1.110000
– With exponent: 1.110000x2-3.

• Step 3 - Normalization
• Step 4- Rounding

– 1.110000x2-3-----> 1.110x2-3.
• Step 5 - Sign

– - 1.110x2-3.

14

Floating Point in MIPS

• MIPS Floating Point
– originally done in a separate chip called coprocessor 1 (also called the FPA for

Floating Point Accelerator).
– Modern MIPS chips include floating point operations on the main processor

chip.
– But the instructions sometimes act as if there were still a separate chip.

• MIPS has 32 single precision (32 bit) floating point registers.
– The registers are named $f0 – $f31
– $f0 is not special (it can hold any bit pattern, not just zero).
– Single precision floating point load, store, arithmetic, and other instructions

work with these registers.
• Double Precision

– MIPS has hardware for double precision (64 bit) floating point operations.
– Uses pairs of single precision registers to hold operands.
– There are 16 pairs, named $f0, $f2, — $f30. (even numbered register)

• Some MIPS processors allow only even-numbered registers ($f0, $f2,...) for single
precision instructions. However SPIM allows all 32 registers in single precision
instructions.

15

Floating Point Instructions

• Arithmetic
– add.s $f2, $f4, $f6 # $f2=$f4+$f6

– sub.s $f2, $f4, $f6 #s --single precision

– mul.s $f2, $f4, $f6

– div.s $f2, $f4, $f6

– add.d $f2, $f4, $f6 #d -- double precision

– sub.d $f2, $f4, $f6

– mul.d $f2, $f4, $f6

– div.d $f2, $f4, $f6

• Data Transfer
– lwc1 $f1, 100($s2) #load word from coprocessor 1

– swc1 $f1, 100($s2) #store word to coprocessor 1

• Conditional Branch
– c.lt.s $f2, $f4 #cond=1 if $f2<$f4

– c.lt.d $f2, $f4

– bclt 25 #if cond==1 (true), PC-rel branch

– bclf 25 #if cond==0 (false), PC-rel branch

16

Floating Point Example (p.209)

• Conversion of temperature from Fahrenheit to Celsius
float f2c (float fahr)

{

return ((5.0/9.0)*(fahr-32.0));

}

17

Floating Point Example - Conversion f2c (p.209) 1/2

18

Floating Point Example - Conversion f2c (p.209) 2/2

19

Check with SPIM

20

Two-Dimensional Matrices (p.210)

• X=X+Y*Z

• X, Y, Z: Square matrices of 4x4
• Double Precision Calculation
void mm (double x[][], double y[][], double z[][]

{

int i, j, k;

for (i=0; i!=4; i=i+1)

for (j=0; j!=4; j=j+1)

for (k=0; k!=4; k=k+1)

x[i][j]=x[i]][j]+y[i][k]*z[k][j];

}

• $a0, $a1, and $a2 : Base addrs of X, Y, and Z, respectively
• $s0, $s1, and $s2: integer variables of i, j, and k, respectively

21

Array Layout

• Row Major Order
– First row elements, then second row elements, etc

• No pseudoinstruction
– li, l.d, s.d (not here!)

• Core Instructions only (with directives)
– double d1, d2, etc # declaring double

precision fp

– lwc1 #load single precision fp

– swc1 #store single precision fp

• Loop structure
– Do Y*Z first
– Then Do X+Y*Z
– Keep for k, j, i

22

Double Precision Floating Point Multiplication (p.210) 1/4

23

Double Precision Floating Point Multiplication (p.210) 2/4

24

Double Precision Floating Point Multiplication (p.210) 3/4

25

Double Precision Floating Point Multiplication (p.210) 4/4

• Care for printing out the result?

26

Rounding

• Floating Point Number are normally approximations
– Why?

• Infinite variety of real numbers, but
• 253 ways of expression in double precision fp

– IEEE 754 Rounding Modes of Approximation
• 2 extra bits on the right during intermediate
• guard bit and round bit

• Guard and Round bits - Illustration
• Addition Example (3 significant decimal digits)

– Without Guard and Round

– With Guard and Round

27

Accuracy in floating points

• Measure of accuracy
– the number of errors in the LSBs of the significands
– “units in the last place” ---> ulp
– Problem when a number is half-way in-between (i.e., 0.5--->0? 1?)

• Norm --round to nearest even number
• a third bit - “sticky” bit (next to the guard and round)

– the sticky bit is set whenever there are nonzero bits to the right of the
round bit

• Sticky bit example

• Without sticky bit

• With sticky bit

28

Summary

• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards do exist

– two’s complement
– IEEE 754 floating point

• Computer instructions determine “meaning” of the bit patterns
• Performance and accuracy are important so there are many

complexities in real machines

