
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM

2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy

3

Chapter Three

Arithmetic for Computers -Part A

4

• Bits are just bits (no inherent meaning)
— conventions define relationship between bits and numbers

• Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
decimal: 0...2n-1

• Of course it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can add a negative number

• How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Numbers

5

• Sign Magnitude: One's Complement Two's Complement
000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

• Issues: balance, number of zeros, ease of operations
• Which one is best? Why?

Possible Representations

6

• 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

maxint

minint

MIPS

7

• Negating a two's complement number: invert all bits and add 1

– remember: “negate” and “invert” are quite different!

• Converting n bit numbers into numbers with more than n bits:

– MIPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits
(“sign extension”)

0010 -> 0000 0010

1010 -> 1111 1010

– "sign extension" (lbu vs. lb) (u -- ‘unsigned’) (load byte)

• lb - (upper 24 bits determined by the sign bit of the
byte)’(byte)

• lbu - (upper 24 bits all zeros)’(byte)

Two's Complement Operations

8

Teasing Problem involving lb and lbu

10

Arithmetic Logic Operation Core Instructions

• MIPS Arithmetic/Logic operations
add, addi, addiu, addu

sub, subu

mult, multu, div, divu

and, andi, nor, or, ori,

beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

• Special Attention Required for these!
– sign extend – addi, addiu andi, ori, slti, sltiu

– zero extend – lbu, addiu, sltiu

– no overflow detected – addu, addiu, subu, multu, divu,
sltiu, sltu

11

• Just like in grade school (carry/borrow 1s)
0111 0111 0110

+ 0110 - 0110 - 0101

• Two's complement operations easy
– subtraction using addition of negative numbers

0111

+ 1010

• Overflow (result too large for finite computer word):
– e.g., adding two n-bit numbers does not yield an n-bit number

0111

+ 0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry “overflowed”

Addition & Subtraction

12

• No overflow when adding a positive and a negative number
• No overflow when signs are the same for subtraction
• Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative
– or, adding two negatives gives a positive
– or, subtract a negative from a positive and get a negative
– or, subtract a positive from a negative and get a positive

• Consider the operations A + B, and A – B
– Can overflow occur if B is 0 ?
– Can overflow occur if A is 0 ?

Detecting Overflow

13

• An exception (interrupt) occurs
– Control jumps to predefined address for exception
– Interrupted address is saved for possible resumption

• Details based on software system / language
• Don't always want to detect overflow

— new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!
note: sltu, sltiu for unsigned comparisons

Effects of Overflow

14

• Let's look at multiplication based on a gradeschool algorithm
(decimal representation)

1000 (multiplicand)
__x_1001 (multiplier)

1000

0000

0000

1000

1001000 (Product)
• More complicated than addition

– accomplished via shifting and addition
• More time and more area

– n-bit multiplcand & m-bit multiplier needs n+m bit long product
• Algorithm (Binary Case)

– At each step
• Copy of the multiplicand in the proper place of the multiplier digit is 1, or
• Place 0 in the proper place if the digit is 0

• Three types of Multiplication Hardware
– Sequential Version
– Refined Version
– Fast Version

Multiplication

15

Multiplication Implementation: Sequential Version

Datapath

Control

Multiplicand
Shift left

64 bits

64-bit ALU

Product
Write

64 bits

Control test

Multiplier
Shift right

32 bits

Data flows top to bottom

16

Multiplication Algorithm Exercise

• Binary Number multiplication by the (sequential) algorithm.
• 0010 (multiplicand)
• x 0011 (multiplier)
• multiplier (8-bit), multiplicand (16-bit) and Product (8-bit)

17

Multiplication: Revised Version

Multiplicand

32 bits

32-bit ALU

Product
Write

64 bits

Control
test

Shift right

What goes here?

•Multiplier starts in right half
of product

18

Multiplication Algorithm Exercise (2) - Revised Version

• multiplicand (8-bit) and [Product (8-bit) ||multiplier (8-bit)]

19

Faster Multiplication

• Uses 31 adders
• Each adder produces a 32-bit sum and a carry
• Algorithm Illustration for the 4-bit by 4-bit multiplication

20

Multiplication in MIPS

• 31 32-bit adders

21

Multiplication in MIPS

• mult : multiply
• multu: multiply unsigned
• 32bit * 32 bit ---> 64-bit result

– upper 32bit result ---> stored at Hi
– lower 32bit result --->stored at Lo

• Fetching the result
– mflo (move from lo) ----> get Lo
– mfhi (move from hi) -----> get Hi

22

Multiplication
Example

23

Multiplication
-conti

24

Division

• The reciprocal operation of multiplication
• Less frequent
• More quirky
• Includes “Dividing by 0”
• Long division example

• Observation
– Divisor is shifted to the right 1 bit at each subtraction
– Quotient bit = 1 when Dividend>Divisor
– Quotient bit=0 when Dividend>Divisor

25

Division Algorithm

(1)Rem - Divisor

(2)If Rem<0,

Rem=Rem(old)

sll Q and Q0=0

Else

sll Q and Q0=1

(3) slr Divisor

•

26

Illustration of Division Algorithm with 4-bit

0111/0010

example

(1)Rem - Divisor

(2)If Rem<0,

Rem=Rem(old)

sll Q and Q0=0

Else

sll Q and Q0=1

(3) slr Divisor

5 steps

(i.e., n+1 steps)

27

Faster Division

• Do not shift Divisor
• Shift Remainder and Quotient at the same time
• Same as the multiplier?

Multiplicand

32 bits

32-bit ALU

Product
Write

64 bits

Control
test

Shift right

28

Division in MIPS

• div: divide
div $s2, $s3 #Lo = $s2/$s3

#Hi = $s2 mod $s3

• divu: divide unsigned
• Result

– Quotient ----> stored in Lo
– Remainder ---> stored in Hi

• Fetching the results
– mflo ---> for Quotient
– mfhi ---> for Remainder

29

Division
Example
(p.188)

30

Division
- conti.

