
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM

2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy

3

Chapter 2

Instructions: Language of the Computer

4

• Instructions, like registers and words of data, are 32 bits long
• Arithmetic Instruction Format (R format):

add $t1, $s1, $s2

registers have numbers, $t1=9, $s1=17, $s2=18

Machine Language

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination
shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

5

• Instructions, like registers and words of data, are also
32 bits long
– Example: add $t1, $s1, $s2

– registers have numbers, $t1=9, $s1=17, $s2=18

• Instruction Format (R):

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• Can you guess what the field names stand for?

Machine Language

6

• Consider the load-word and store-word instructions,
• Introduce a new type of instruction format

– I-type for data transfer instructions
• Load/Store Instruction Format (I format): Example

lw $t0, 32($s2)

Machine Language

op rs rt 16 bit offset

7

• Ubranch instruction or jump instruction:

j label #go to label

Control Flow Instructions (J Format)

• Instruction Format (J Format):

op 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

8

MIPS Opcode map

9

Machine Code Exercises (1)

• Example: add $t0, $s1, $s2
• R-Format

10

Machine Code Exercises (1) -Ans.

• Example: add $t0, $s1, $s2
• R-Format

11

Machine Code Exercises (2)

• Example: add $s1, $s2, $s3

12

Machine Code Exercises (2)-Ans.

• Example: add $s1, $s2, $s3

13

Machine Code Exercises (3)

• Example: sub $s1, $s2, $s3

14

Machine Code Exercises (4)

• Example: addi $s1, $s2, 100

15

Machine Code Exercises (5)

• Example: lw $s1, 100($s2)

16

Machine Code Exercises (6)

• Example: andi $s1, $s2, 100

17

Machine Code Exercises (7)

• Example: sll $s1, $s2, 10

18

Machine Code Exercises (8)

• Example: beq $s1, $s2, 100

19

Machine Code Exercises (9)

• Example: slt $s1, $s2, $s3

20

Machine Code Exercises (10)

• Example: j 10000

21

Instruction and Machine Language - summary

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 ≠ $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

• Formats:

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

22

• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

23

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

Control

24

• MIPS unconditional branch instructions:
j label

• Example:

if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2
h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

• Can you build a simple for loop?

Control

25

• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

• Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

Control Flow

26

Decision Making Exercise (p.72) 1/2

27

Decision Making Exercise (p.72) 2/2

28

Decision Making Instruction (p74.asm) p1/2
• Ten single

digit decimal
number are
stored at
Save[i]

• Guess a
number

29

Decision Making Instruction (p74.asm) p2/2

30

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Solutions? Why not?
– put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• Design Principle: Make the common case fast.

Constants

31

• We'd like to be able to load a 32 bit constant into a register
• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?

