
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM

2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy

3

Chapter 2

Instructions: Language of the Computer

4

Instructions:

• Language of the Machine
• We’ll be working with the MIPS instruction set architecture

– similar to other architectures developed since the 1980's
– Almost 100 million MIPS processors manufactured in 2002
– used by NEC, Nintendo, Cisco, Silicon Graphics, Sony, …

• ISA type sales

0

200

400

600

800

1000

1200

1400

1998 1999 2000 2001 2002

Other
SPARC
Hitachi SH
PowerPC
Motorola 68K
MIPS
IA-32
ARM

5

MIPS arithmetic

• All instructions have 3 operands
• Operand order is fixed (destination first)

Example:

C code: a = b + c

MIPS ‘code’: add a, b, c

(we’ll talk about registers in a bit)

“The natural number of operands for an operation like addition is
three…requiring every instruction to have exactly three operands, no
more and no less, conforms to the philosophy of keeping the
hardware simple”

6

MIPS arithmetic

• Design Principle: simplicity favors regularity.
• Of course this complicates some things...

C code: a = b + c + d;

MIPS code: add a, b, c
add a, a, d

• Operands must be registers, only 32 registers
provided

• Each register contains 32 bits

• Design Principle: smaller is faster. Why?
– Large number of registers may increase the

clock cycle time
– Then why not 30 registers?

• Balance between cries for more registers
from programmer vs. fast clock cycle
from hardware designer

R0 - R31

PC
HI
LO

Registers

R0 - R31

PC
HI
LO

Registers

7

32 Registers & Policy of Use Conventions

Name Register number Usage
$zero 0 the constant value 0
$at 1 Assembler temporary (reserved)
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$k0-$k1 26-27 reserved for OS kernel
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system

8

Simple Example with MIPS Assembly Language
using SPIM

• F = (g+h) – (i+j)
• G=5, h=10, i=20, and j=1

• See the result of SPIM. Where is the result?

9

SPIM’s Human Interface (syscall)

10

Simple Example with Syscall

• Result

11

Let’s read values from keyboard

• Result
• a=b+c

12

Let’s add bells and whistles

• Type message for input, saying “type first number”, etc
• Use $v0= 4 for “print string” in syscall

13

What if we want to use only core instructions

14

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

• Arithmetic instructions operands must be registers,
— only 32 registers provided

• Compiler associates variables with registers
• What about programs with lots of variables

15

MIPS Register & Memory

16

Memory Organization

• Viewed as a large, single-dimension array, with an address.
• A memory address is an index into the array
• "Byte addressing" means that the index points to a byte of memory.

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

17

Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Words are aligned

i.e., what are the least 2 significant bits of a word address?

0
4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

18

Byte Order and Two Camps

19

Instructions for Memory Access

• Load and store instructions
• Example:

C code: A[12] = h + A[8];

MIPS code: lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)

#where $s3 holds the base address of array A

• Store word has destination last
• Remember arithmetic operands are registers, not memory!

Can’t write: add 48($s3), $s2, 32($s3)

20

Load and Save Basics in SPIM (1/2)

21

Load and Save Basics in SPIM (2/2)

22

Check if we know this:

• MIPS
— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

