

Using the TRACE Code for Reactor Simulations

Shawn O. Marshall Reactor Systems Engineer Office of Nuclear Regulator Research (RES) 11/21/13

Presentation Overview

Office of Nuclear Regulatory Research (RES)

- Mission
- How RES Accomplishes Its Mission :
 - The Evaluation Model Development and Assessment Process (EMDAP)
 - The User-Need Process

Computer Codes Used in RES

- TRACE Code
 - Overview
 - Code Characteristics
 - Limitations
 - Assessments
 - User needs
 - Future Code Development
- Summary

The RES MISSION

- Provide technical advice, technical tools and information
 - for identifying and resolving safety issues, making regulatory decisions, and promulgating regulations and guidance.
 - to conduct independent experiments and analyses,
 - to develop technical bases for supporting realistic safety decisions by the agency,
 - to prepare the agency for the future by evaluating safety issues involving current and new designs and technologies.
- Develop programs with consideration of Commission direction and input from the program offices and other stakeholders.

U.S.NRC UNITED STATES NUCLEAR REGULATORY COMMISSION Protecting People and the Environment

The Evaluation Model Development and Assessment Process (EMDAP)

RES uses the EMDAP in accomplishing its mission

An evaluation model (EM) is the calculational framework for evaluating the postulated behavior of a reactor system.

Therefore, the process of evaluating a T/H problem begins with the assessment of an existing EM or the development and assessment of a new EM (the EMDAP process).

- EMs can consist of a single computer code or multiple codes.
- RES uses the EMDAP to conduct its own research or to validate the use of its technical tools by the program offices

• EMDAP Steps:

- 1. Based on type of problem or reactor being considered, identify mathematical modeling methods, components, and phenomena needed to evaluate event behavior relative to figures of merit.
 - » Phenomena Identification and Ranking Table (PIRT)
- 2. Develop assessment base
- 3. Develop the evaluation model.
 - » Determine best calculational devices, e.g., TRACE code, CFD, Excel, MATLAB, etc.
- 4. Assess the adequacy of the EM

How RES Accomplishes Its Mission: The User-need Process

~80% of RES work involves responding to User-need requests for T/H analysis support.

Because of the complexity of T/H analyses, the bulk of this support involves the use, development, and assessment of computer codes

- Two-phase flows and heat transfer
- Complex single-phase fluid dynamics

T/H analyses in support of user needs include the following:

- Audit of licensee submittals for license amendments, power uprates, tech spec changes, and risk-informed plant changes
- New reactor design certification
- Resolution of generic safety issues
- Rulemaking
- Assessment of operating events

- TRACE T/H Systems Code
- MELCOR T/H Systems Code, used primarily for severe accident response and source term, and containment response
- FLUENT Commercial CFD Code
- CONTAIN Reactor Containment Analysis Code
- FRAPTRAN Fuels Code

Developed to simulate best-estimate transient and steady-state neutronics/thermal-hydraulic behavior in LWRs

Combination of RELAP5,TRAC-B, TRAC-P, and RAMONA codes

 Can run input models made using RELAP5 and TRAC-B,-P

Dynamically coupled to the Purdue Advanced Reactor Core Simulator (PARCS), which provides capability to calculate multi-dimensional timedependent power distributions

Can be used within the Symbolic Nuclear Analysis Program (SNAP) graphical user environment

- Pre-processing
- Runtime control
- Database access and storage
- Post-processing

Problems Involving Two-phase flows and Heat Transfer

TRACE <u>TRAC/RELAP</u> <u>Advance Computation Engine</u>

TRACE Modeling Environment

- Employs a componentbased approach
 - Each physical piece of equipment in a flow loop can be represented using a TRACE component:
 - PIPE
 - Pressurizer
 - Jetpump
 - Vessel
 - Each component can be nodalized into volumes over which the fluid, conduction, and kinetics equations are averaged

TRACE Computing Environment

- Runs on most operating systems
 - Windows
 - LINUX
 - Mac OSX
- Modular coding (Fortran 95) makes TRACE portable, maintainable, and extensible
- Exterior Communications Interface allows for coupling with auxiliary codes:
 - MATLAB
 - CFD codes (future)
- Supports standard programming languages, network, and file formats:
 - Java, C, C++, PERL, Python
 - TCP/IP, BSD Sockets, PVM
 - XML, PDF, SVG, PNG

TRACE Code Characteristics

- A finite-volume, two-fluid
 compressible flow code w/1-,2-,&
 3-D flow geometry
 - Six-equation hydrodynamic model to evaluate liquid-gas flow
 - Additional mass conservation equations to track noncondensable gases and dissolved solute in the liquid field (Boron)
- Non-homogeneous, nonequilibrium modeling
- Static flow-regime-dependent constitutive equation package
- Comprehensive heat-transfer capability
 - 2-D treatment of heat transfer within structures
 - Flow-regime-dependent heat transfer coefficients from generalized boiling curve

TRACE Limitations

TRACE is not appropriate for modeling...

- Situations in which transfer of momentum plays an important role at a localized level.
- Transients in which thermal stratification of liquid in 1-D components is expected.
- Scenarios where viscous stresses are comparable to or larger than wall or interfacial shear stresses.
- In the evaluation of the stress/strain effects of temperature gradients in structures

Other Caveats

- Viscous heating within fluids is not generally considered; special model available to account for direct heating of fluid by pump rotor.
- Approximations in wall and interface heat flux terms affect accuracy

TRACE Assessment

TRACE has to be assessed and demonstrated to be applicable over the range of intended uses.

- System-level codes like TRACE do not have "first principle" models; the models are semi-empirical or fully empirical in nature.
- As a result of extensive assessment and peer-review, TRACE V5.0 was found suitable for analyzing SBLOCA in currently operating LWRs and LBLOCA in operating plants that do not have upper-plenum injection.
- The current version of TRACE is V5.0 Patch 3; version V5.0 Patch 4 is expected in a few months.

U.S.NRC Asse	SS	sn	าะ	en	t I	Ma	tr	ix	fc	or	S	Bl	_C)(CA	\ İI	n	P\	N	Rs
Key: ● = simulated ⊖ = partially simulated - = not simulated or measured	Blowdown	Natural Circulation	Loop Seal Clearance	Boil Off	Recovery	LOFT	ROSA-IV	BETHSY	Semiscale	SCTF	UPTF	THTF Mix Level and Uncovery	FRIGG	RBHT Mixture Level	RBHT Steam Cooling	UCB Condensation	Dehbi Condensation	U. Wisc. Condensation	Bankoff CCFL Tests	Single Tube Flooding
Process																				
Oxidation (fuel rod)	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Decay Heat (fuel rod)	•	٠	٠	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Local Power (fuel rod)	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
3-D Power Distribution (core)	-	-	-	•	•	-	θ	θ	-	•	-	-	-	-	-	-	-	-	-	
Post-CHF Heat Transfer (core)	-	-	-	٠	٠	θ	•	•	٠	٠	-	θ	-	٠	-	-	-	-	-	
Rewet / Tmin (core)	-	-	-	٠	٠	θ	•	•	٠	٠	-	-	-	٠	-	-	-	-	-	
Mixture Level (core)	-	-	•	٠	٠	-	٠	•	٠	Φ	-	•	•	٠	٠	-	-	-	-	
Hot Leg-Downcomer Gap Flow (UP)	-	-	•	-	-	-	•	•	٠	-	-	-	-	-	-	-	-	-	-	
Counter-current Flow & CCFL (UP /Hot Leg Nozzle)		٠	•	-	-	-	•	•	٠	-	-	-	I	-	-	-	-	-	•	
Primary side heat transfer / U-tube condensation (SG)	•	-	٠	-	-	•	•	•	٠	-	-	-	-	-	-	٠	•	•	-	-
CCFL / Tube Voiding (SG)	-	-	٠	-	-	θ	•	•	٠	-	-	-	-	-	-	-	-	-	-	•
Primary Flow Resistance / Two-Phase ΔP (SG)	-	-	٠	-	-	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-
Entrainment/Flow Regime/Interfacial Drag (loop seal)	-	-	٠	-	-	-	•	•	•	-	-	-	-	-	-	-	-	-	-	-
Horizontal Stratification (loop seal)	-	-	٠	-	-	-	•	•	٠	-	-	-	-	-	-	-	-	-	-	-
Condensation to stratified layer (cold leg)	-	-	-	٠	•	-	٠	•	٠	-	θ	-	-	-	-	-	-	-	-	-
Horizontal Stratification/Flow Regime (cold leg)			٠	•	•	-	•	•	•	-	θ	-	-	-	-	-	-	-	-	-

U.S.NRC Assessment Matrix for SBLOCA in PWRs

Domestic Experimental Programs

 Rod Bundle Heat Transfer (RBHT) facility

Protecting People and the Environment

- Penn State Univ.
- Spacer-grid rewet and droplet size during reflood
- T/H Institute
 - Numerous small- and largescale experiments
 - Purdue Univ. Multidimensional Integral Test Assembly (PUMA)
 - Tests relevant to ESBWR
 - Interfacial area
 - Void fraction in large diameter pipes

International Experimental Programs

- OECD/ROSA-2
 - Full-height, 1:48 scale model of PWR, 2-loops
 - Intermediate pipe breaks (>10 in)

Protecting People and the Environment

- Upper-head break
- Thermal stratification during ECCS injection
- OECD/PKL-2
 - Full-height, 1:145 scale model of PWR, 4-loops
 - Boron precipitation
 - Steam generator parametric studies
 - Forced depressurization during LOCAs

USER-NEED TRANSIENT and ACCIDENT ANALYSIS

Licensees are required to use approved EMs to demonstrate compliance with NRC safety regulations:

- Therefore, as part of the RES mission of providing ightarrowtechnical tools, RES develops TRACE input decks (EMs)
 - Receives plant-specific information from licensees during pre-application phase
 - TRACE input-deck library
 - BWR/3, /4, & /5
 - Westinghouse 2,3,& 4 loop PWR
 - C-E 2-Loop
 - B&W L-Loop
 - New BWR and PWR designs, e.g. ABWR, US-EPR, APWR, etc.

User-need support for new-reactor licensing and design certification activities :

- TRACE input deck development
- Assessment of TRACE applicability
 - Focus on major differences between new and currently operating reactors
 - Component/System
 innovations
 - Passive safety systems
 - Coupled T/H & 3D
 Kinetics

New Reactor Designs

SBLOCA Animation

*Will run an actual TRACE SBLOCA simulation and show the evolution of the transient using the animation.

• Physical Models Currently Under Development:

- Droplet Field
 - Allows for more mechanistic two-phase flow models
 - Increases accuracy in modeling droplet transport and interfacial heat transfer during reflood phase of LBLOCA
- Grid Spacer Models
 - Increases accuracy of predicted temperature profiles downstream of grids
- Containment modeling
 - Mechanistic models for film and droplet/spray condensation heat transfer are needed
- Improvements to Constitutive Relations:
 - Entrainment and de-entrainment
 - Subcooled boiling
 - Interfacial condensation

Future TRACE Assessment and Enhancement Needs

TRACE development and validation is driven by application needs

Figure C.2-39. Rod Clad Temperature Comparison at 3.05 Meters above the Bottom of the Heated Rods in the Medium Powered Region - Run 62.

Droplet field should improve cladtemperature predictions at upper bundle elevations

- Most of the T/H work done in RES involves the use, development, and assessment of computer codes
- The primary codes used in RES for T/H analyses are TRACE, MELCOR, and FLUENT
- The enhancement of RES T/H codes is driven by application needs
- Code development and assessment will be continually needed to meet future challenges