
Myths of Correctness
Jade Parker



Summary

The Software Crisis came into existence because it is 
impossible to write bug-free programs, as testing is not 
thorough enough to catch everything. The main problem is 
working with and preventing complexities that can lead to 
error.



Is the Computer to Blame?

Often blamed for problems 
when it may just be an 
“innocent bystander”

Either hardware stopped 
working or a person messed 
up

Hardware failure infrequent
Crashes usually caused by 
programmer or user

Unfriendly user interface 
can be just as much to 
blame as software



Software Crisis

Coined 10-15 years ago

Led to software 
engineering field

Today, software makes up 
80% of cost

Inability to write error-free 
software

Examples:
Election Night fiasco
Space Shuttle Orbiter



The Job is Never Done

Programs fail not from being worn out, but from 
encountering problematic circumstances after running 
on erroneous code

Maintenance = continued development

Most software products are lemons



Bugs Your Exterminator Can’t 
Find

Inadequacy vs. 
incompetence

Not possible to find ALL 
bugs by testing

Testing corroborative, not 
definitive



Flexibility: It’s a CURSE!!!

Behavior can be changed 
radically quite easily

More adjustments can make 
software:

More complex

Harder to read & 
Understand

More likely to contain 
errors

More likely to require 
future modification



This Relationship Isn’t Working Out…

Interdependent program interface problems

Conflicting assumptions

Subtle dependencies nearly impossible to detect by 
studying program

Problems grow rapidly with size and complexity 
increases



The Main Job:

Manage unavoidable complexity and 
avoid unmanageable complexity


