
+

Myths of Correctness

Phathom Donald
@02644254

ckim
Rectangle



+
Summary

Computer programs were very complex entities that 
will never be error-free. This is not to imply that the engineers 
or designers who built the programs are incompetent. 
Computer programs, or software, because of its flexibility, 
complexity, potential, and many other factors, will always 
contain “bugs.” They are not subject to the natural constraints 
that physical objects are faced with. Only maintenance and 
adequate testing can be applied to these software not to avoid 
issues, but to manage them.



+
Software Crisis

The increasingly apparent difficulty of writing large reliable 
computer programs led not only to the term “software crisis,” 
but also to a whole field of study called software 
engineering.

Of all the problems inherent in the software crisis, the most 
significant is the inability to writer error-free software.



+
False Election

During the 1980 election, Jimmy Carter conceded because his 
pollster warned him that he was going to lose. This warning was 
prompted from the computer predictions used by TV networks 
that declared Reagan the winner based on early returns.

This event exemplifies people’s tendency to trust technology 
and how they rarely question its validity and instead question its 
effects.

A similar software crisis occurred in Quebec when an unpopular 
political party, the Union Nationale, was seemingly leading in an 
election. However, software bugs were attributing votes to the 
wrong candidates, and the TV stations did not question it.



+
Space Shuttle Computer Problems

On board the U.S. Space shuttle, 
redundancy is achieved by five 
identical computers: four of them 
run exactly the same problem 
and compare their results during 
critical flight errors, while the 
fifth computer operates a 
program that provides a backup 
flight-control system.

A bug occurred when the fifth 
computer attempted to “tune in” 
with the other four.

It arose from combining the 
primary software with the 
backup software that exists only 
in case the primary software 
doesn’t work.



+
Maintenance

Running the same program 
thousands of times may cause the 
computer hardware components 
to wear and require maintenance, 
but the software will cannot wear 
out.

A program does not fail because 
it has worn out, but because it 
didn’t work properly to begin 
with and that is finally being 
recognized.

If software products were never 
accepted until they were error-
free, few companies could ever 
finish their development 
contracts.

Most software products are 
comparable to lemons found at 
car dealerships.



+
Inadequate Testing

The inadequacy software testing is not the result of 
incompetence because it is impossible to expose all of the 
bugs in a program by means of exhaustive testing.

Black Box Testing: to try every operation and see if the 
program gives the correct results. It is hopelessly inadequate 
as the basis for any thorough evaluation of computer 
program correctness.

No matter how diligently a computer program is tested, it 
cannot be tested completely.

However, not to test a program before depending on it would 
not be recommended.



+
Flexibility: Good or Bad?

A computer’s behavior can be changed radically by changes 
to its software. Major changes can be accomplished quickly 
and at low cost. This makes flexibility seem like a blessing.

However, software complexity can grow quickly, leading to 
software that’s hard to read, hard to understand, and likely to 
contain errors. This makes flexibility seem like a curse.

Computer software lack natural constraints. Each new feature 
may interfere with several old features and each attempt to 
fix a bug may create several more.



+
Invisible Interfaces

A common approach to writing large programs is to divide the 
problem into parts and write a separate program for each part.

Much of the difficulty arises because the separate programs 
must interact to solve the overall problem.

The more complicated an interface, the more likely it is that 
something will fall through a crack. Software interfaces are so 
error-prone because it is so easy to build complicated 
interfaces.

Interface related problems are common in any computer 
program, but their prevalence grows rapidly with the size of the 
program.



+
The Art of Scaling up

Programmers constantly act as if the skill and effort required to build small 
computer programs can be scaled up easily to build large programs.

Problems in some projects arose in large part because the people involved 
underestimated the difficulty of scaling up their previous efforts.

Scaled-up software is not only harder to produce, it’s harder to maintain. 

When maintaining a program that someone else wrote, your understanding 
must rely solely on the program’s text.

To manage complexity, appropriate tools are needed such as support 
software.

To avoid excessive complexity, something analogous to the discipline 
imposed by the natural constraints on building physical objects in a 
necessity.

Complexity cannot be eliminated, but it can be managed.



+
Lessons to Be Learned

Software problems are the unavoidable results of the 
programming languages and methods that we use.


