CHAPTER 8
Myths of Correctness

29-CENT DISCREPANCY
GENERATES ERRONEOUS
$161 BILLION CREDIT

The headline summarized a filler item—two column-inches buried
within a recent edition of The Washington Post. It was the usual
story: a department store charged someone too much; the customer
complained and was given a credit, but the amount was 29 cents
short; the customer complained again and this time received a wel-
come $161 billion credit. I grinned, clipped the story for my “com-
puter errors” file, and read on. Only later did I notice that the story
didn’t mention a computer.

We're all quick to blame computers. We do it when we have
billing problems, credit problems, delivery problems, reservation
problems, and information problems. And if we don’t blame the
computer, someone else does—usually in a defensive voice over a
phone line.

Does the computer deserve all this blame? Literally speaking, of
course not. If a machine can ever be said to have caused a problem,
the machine is at most a victim of circumstances—people designed
the machine, people built it, people chose to use it, and people
controlled it. When a car crashes and causes serious damage, we
may blame the driver, we may blame some other person at the
scene, and we may blame the manufacturer, but we don’t seriously
blame the car.

Such linguistic distinctions aside, I’'m convinced that “the com-

161

162 | THE SACHERTORTE ALGORITHM

puter” often gets blamed when in fact it was either not present at
all or present only as an innocent bystander. When we don’t get
around to doing something or don’t want to bother trying, it’s easy
to say “the computer goofed” or “the computer’s down.” In a recent
newspaper column about these modern excuses, Ellen Goodman
cited a friend’s comment: “The computer is down” is another way
to spell “coffee break.” As a modern scapegoat, what could be more
convenient and convincing? And satisfying—it’s a bit like finding
out that your parents are human. Equipped with considerable means,
having frequent opportunities, and exempt from the requirement
of motive, the computer is an ideal villain. Moreover, when we
resolve some mystery by saying, plausibly, “The computer did it,”
the computer can’t defend itself. It is, to use Ellen Goodman’s
words, the silent butler.

Wrongly accused as it may often be, the computer is responsible
for plenty of true horror stories. Indeed, pointing out its occasional
and perhaps considerable innocence is a little like absolving Lizzie
Borden from an ax murder she happened not to commit. In dis-
cussing computer foulups, however, it's important to make those
linguistic distinctions that I mentioned before. When we “blame”
a computer for some problem, we're really saying either that a
hardware component stopped working properly or that someone
goofed. That someone could be a hardware designer, a hardware
builder, a programmer, or a user.

Hardware components do fail, but modern hardware is remark-
ably reliable; in a well-established computer system, hardware fail-
ures are a relatively infrequent cause of problems. And hardware
designs do contain flaws, particularly when they’re new designs.
But it’s fair to say that hardware design flaws are also a relatively
infrequent cause of problems, especially in well-established sys-
tems. When a computer crashes, chances are that someone tripped
it, either a programmer or a user.

I've already discussed how easy it is for novice users to cause
problems, especially when confronted with inadequate user-
interfaces. Veterans have similar problems, but they often down-
play the importance of user-interfaces and blame their computer
problems on software bugs; the bugs, however, are not always at
fault. Recently I tracked down a variety of stories about computer

MYTHS OF CORRECTNESS | 163

problems that supposedly were caused by software bugs, and a
surprising number of them turned out to be caused by incorrect
program operation rather than incorrect programming. You may
recall talk of a computer problem during the final moments of the
first moon landing—the computer became overloaded and the soft-
ware responded by restarting itself several times. It turned out
that an astronaut had obeyed an incorrect checklist and left a radar
switch in the wrong position, thereby generating 13 percent more
load on the computer than had been anticipated. This was not the
only such problem. Moreover, the astronauts proved themselves
capable of making mistakes without being told to do so. Indeed,
one study of the computer problems that were encountered during
the Apollo space-flight program concluded that about 75 percent of
the problems were caused by operator errors. Translated roughly
into computer-speak, this means that the Apollo software wasn’t
user-friendly.

The right stuff, it appears, is no substitute for a good user-
interface. Unfortunately, while a good user-interface can protect
us from our own errors, we still have to suffer from the other main
cause of computer problems: programming errors. And what a cause
it is—most large computer programs, even well-established ones,
are plagued with bugs.

The Software Crisis

It sounds so melodramatic—the kind of phrase that might be
coined by the news media and snickered at by software experts.
To the contrary, the phrase arose in the software community ten
to fifteen years ago, and it appears regularly in academic text-
books. Indeed, the increasingly apparent difficulty of writing large,
reliable computer programs led not only to the term “soft-
ware crisis,” but to a whole field of study, called software engi-
neering. Within the computer industry today, the software crisis
is widely recognized and widely battled, except by a few who
accept it as a fixture along with cancer, venereal disease, and budget
deficits.

164 | THE SACHERTORTE ALGORITHM

When people refer to the software crisis, they have in mind
several trends. While hardware costs have plummeted, software
costs have not. Ten years ago, hardware made up 80 percent of the
total cost of a typical large computer system. Today, software makes
up 80 percent of the total cost, and this dominant cost can not be
predicted well. On top of these financial problems, software usually
takes longer to finish than was promised; and when it is finished,
it’s bigger, slower, and less capable than was promised. These
deficiencies might be bearable if the resulting software were reli-
able, but it isn’t. It tends to fail often, and efforts to fix it are just
as costly and error-prone as its original development. Moreover,
software is hard to change—efforts to improve software capabilities
are even more costly and error-prone. While these problems tend
to be most obvious in large software systems built for the Depart-
ment of Defense, they are well known in commerecial systems as
well. There are, of course, exceptions, but the general trends are
clear and widely recognized.

Of all the problems inherent in the software crisis, the most
difficult, troublesome, and dangerous is our inability to write error-
free software. Two examples may help to make this point.

An Election Night Story

Jimmy Carter conceded the 1980 election before the polls closed
in California. His pollster Pat Cadell had warned him that he was
going to lose, and the TV networks—using computer predictions
based on early returns—declared Reagan the winner early in the
evening. Shortly thereafter Carter made it official. West Coast
citizens felt cheated. And Democratic candidates on the West Coast,
especially those who lost the election, were furious. They believed
that the early concession had kept Democratic voters at home and
Democrats out of office. Someone even introduced a bill in the U.S.
Congress that would make it illegal to concede before all the polls
were closed.

It’s a tough issue. It’s hard to make a strong case that Carter’s
concession changed the outcome of any particular West Coast elec-
tion—the races just weren’t that close; besides, didn’t Republicans
stay home too? But the events were still disturbing. The technology

e

MYTHS OF CORRECTNESS | 165

of time zones, telecommunications, and computers might have dis-
torted the will of the people. Moreover, this could have happened
even if Carter hadn’t conceded. After all, people still would have
watched TV. They still would have seen those checkmarks next to
Reagan’s name on the network tote-boards, and they still would
have heard well-known correspondents reporting on and inter-
preting a computer’s landslide projections.

These events provide yet another example of our tendency to
trust technology. People question how technology is used in elec-
tions, they question its effects, but they rarely question its validity.
The election process is affected by instant information—information
that’s gathered, analyzed, and distributed faster than the sun sets.
People question the effects of this instant information, but they
don’t question the information itself.

They should. Consider what happened during the 1981 provincial
election in Quebec, Canada. The two main parties in Quebec are
the Parti Quebecois (PQ) and the Liberal Party. There is also the
Union Nationale, a small splinter party, and the Marxist-Leninist
party, which has only a few hundred members. On election night
two TV stations provided coverage. Viewers of one station saw
unsurprising results—the Liberals and the PQ led almost all the
races (Canadians call them ridings), and the station declared at 8:45
P.M. that PQ had won a majority government.

Things were different on the other station, as well as on a co-
operating radio network. The Union Nationale, having been given
essentially no chance by anyone, was leading 19 ridings, and a
Marxist-Leninist candidate was leading one. The PQ was leading
20 ridings, and the Liberals only 9. The results were astounding,
and the commentators lost no time in explaining them. One person
dismissed sarcastically “the so-called experts and commentators
who had written off the Union Nationale”; the experts were wrong—
“the people have spoken.”

This apparent upset by the Union Nationale was not only as-
tounding, it was wrong. Software bugs were attributing votes to
the wrong candidates, and the TV station went right along. Even-
tually they admitted the mistake—twenty minutes after the other
station had declared a PQ majority—and they subsequently filed a
million dollar lawsuit against the company that had assisted them

166 | THE SACHERTORTE ALGORITHM

in producing the faulty software. The postmortems were mer-
ciless—a columnist in La Presse cried “shame . . . dishonor . . .
humiliation.” A Montreal Gazette columnist likened the election
night show to Monty Python’s Flying Circus, citing “general agree-
ment that the election night show was ‘the greatest fiasco’ in
Quebec TV history.”

Irony On Board the Space Shuttle

One of the best examples of the software crisis is carried on board
every U.S. Space Shuttle Orbiter. NASA has stringent and effec-
tive reliability policies. As a result, all of the critical systems in the
Orbiter are redundant in one way or another. In the case of data
processing, the redundancy is achieved by five identical computers.
Four of them are arranged as a voting group—during critical flight
periods, all four run exactly the same program and compare their
results. Any computer that disagrees with the others is immediately
switched out, a procedure that protects the Orbiter against com-
puter hardware malfunctions. The fifth computer operates more or
less independently, executing a different program, written by a
different contractor. This program provides a backup flight-control
system for use if all four voting computers fail.

All four voting computers could fail simultaneously if all four
coincidently suffered hardware failures or if there was a fatal bug
in the program that they all run. But the possibility of simultaneous
hardware failures is not the reason for having the fifth computer
run a different program—if it were, more overall reliability could
be achieved by having all five computers run the same program
while voting. Rather, the existence of independent backup software
is motivated by the possibility of a fatal bug in the primary flight
software. It’s an expensive precaution—by the time the space shut-
tle program is over, millions of dollars will have been spent on that
backup program. Those millions will be spent because NASA rec-
ognized that it couldn’t develop error-free flight software. That
backup computer is a running symbol of the software crisis.

As it happens, the backup computer was involved in a famous
bug. While the backup computer operates more or less indepen-
dently, it is in fact connected to the other four. It “listens in” on

MYTHS OF CORRECTNESS | 167

them so that it has up-to-date information in case it has to take
over. When the backup flight software begins running on the backup
computer, it has to synchronize with the primary flight software
before it can begin to listen in. This is a bit like “tuning in” to a
dance rhythm before trying to follow a dancing partner, which can
be tricky. It’s particularly tricky for the Orbiter software because
the operating systems for the primary and backup flight software
exercise control according to different philosophies. The primary
software is asynchronous or priority-driven, which means that it
pays attention to tasks on demand and in accordance with an-
nounced importance—it acts like teachers in a progressive day care
center who interrupt what they’re doing in order to pay attention
to the loudest screaming child. The backup flight software is syn-
chronous or time-slotted, which means that it pays equal-length
attention to tasks in a fixed sequence. It acts like the stern mod-
erator of a debate among eight political candidates, disallowing
interruptions and giving equal time to each candidate in turn re-
gardless of how much they have to say or how loud they say it.

Under these circumstances, arranging for the backup software
to “tune in” resulted in a bug. As far as bugs go, it was relatively
minor, in the sense that it was relatively easy to fix. But you can’t
fix a bug that you don’t know about. This particular bug was ex-
traordinarily subtle, and it remained unknown for a long time.
When it finally transpired, it became perhaps the most widely known
bug in history, but until then it lurked unknown, waiting for an
unlikely but possible series of coincidences. Finally they occurred,
not during testing, but at T minus 20 minutes during the countdown
of the space shuttle’s first scheduled launch, when the backup flight
software was turned on. It turned on, but it didn’t tune in. The
launch was dropped for the day.

The bug didn’t prevent the primary flight software from working
properly. And the bug wouldn’t have prevented the backup flight
software from working properly, had the backup software been
able to tune in. The bug arose from combining the primary software
with backup software that exists only in case the primary software
doesn’t work. How ironic. And how illustrative of the difficulties
inherent in software engineering.

The election night story and the space shuttle story are just two

168 | THE SACHERTORTE ALGORITHM

examples of the software crisis, but they’re not exceptions. Both
of these programs are almost certain to have additional bugs, and
most other large computer programs are also erroneous. This fact
surprises many people, especially since it’s common to hear that a
computer program has passed from “development” into “mainte-
nance.”

The Meaning of Maintenance

Hardly a week goes by without our being treated to a prediction
of how the onslaught of computers will affect employment. It’s easy
to get the impression that soon we’ll all be programming computers
or serving fast food. Such predictions are naive, unrealistic, and
myopic, but secretly I relish them because they put me in the
category of those who can choose what to do. You might think that
programming would win hands-down, but there are some distinct
advantages to serving fast food. When you slap together a ham-
burger, for example, at least you know when you’re done. Not so
with software development—permit me the following distortion of
a well-known saying:

A fast food job lasts from bun to bun,
But a programming job is never done.

It’s obvious that a programming job can be a long one, especially
if the object is to develop a large software system, but many peo-
ple don’t realize just how long it can take. One reason for this is
the term “software maintenance”—a common linguistic obfuscation
that is itself an amusing symptom of the software crisis.

When I mentioned at the beginning of this chapter that we don’t
seriously blame a car when it crashes, I left out one legitimate
target for blame: insufficient or faulty maintenance. Some car parts
need occasional attention to keep them working properly, and oth-
ers need occasional replacement. If these needs are neglected or
improperly met, a crash may ensue.

Can insufficient or faulty maintenance be blamed for a software
crash? No, at least not in the same sense. Cars and other physical

MYTHS OF CORRECTNESS | 169

products need maintenance because they wear out with use. But
software has no physical properties, only logical properties. When
you run the same program a thousand times, some of the computer
hardware components may wear and require maintenance, but the
software can’t wear out. If I made Aunt Martl’s Sachertorte a
thousand times, I might wear out my kitchen, myself, and my
friends, and I might require a hundred fresh copies of the recipe,
but the recipe itself couldn’t wear out.

A program can work properly a thousand times and fail suddenly
the next time. It might thereby give the appearance of having worn
out, but what really happened is that an unusual set of circum-
stances was encountered for the first time. A program doesn’t fail
because you wear it out; it fails because it didn’t work properly to
begin with and you finally have occasion to notice that fact. Software
is one of the few products of engineering that can truly be said to
last forever. This is a marketing dream; unfortunately, few software
products are good enough to take advantage of it.

Although the term “software maintenance” is inappropriate, it’s
common to hear it. Indeed, when most customers buy a large pro-
gram, they usually enter into a maintenance contract. In return for
a monthly or yearly payment, the customer receives occasional
revisions of the program. The revisions contain fixes for some of
the bugs that were in the original product and perhaps some im-
provements. The maintenance contract may also provide access to
consultants who can help customers work around bugs that they
encounter. To a large extent “maintenance” is a software euphe-
mism for “continued development.” This language doesn't fool any-
one, but it’s a convenient fiction. It allows software developers to
declare, in analogy with equipment contracts, that a software prod-
uct has been “developed” and is ready to enter service and be
“maintained.” If software products were never accepted until they
were error-free, few companies could ever finish their development
contracts.

If you buy a new car and spend the next year having the dealer
fix things that didn’t work right to begin with, you don’t say that
your car is being maintained; you say you bought a lemon. By this
criterion, most software products are lemons.

170 | THE SACHERTORTE ALGORITHM

Why Is Software So Hard?

If a car manufacturer produces mostly lemons, we judge the
manufacturer to be incompetent, a judgment supported by the ex-
istence of many well-built cars. But there is not much well-built
software anywhere, and from the bitter taste of a software product,
it’s unfair to conclude that the builder is incompetent. In general,
we know more about building cars well than we know about building
software well. What makes software so hard? The short answer is
“complexity,” but the question deserves a slightly longer answer.

The Inadequacy of Testing

A common reaction to the story about the space shuttle bug is
surprise that the bug wasn’t caught during testing. Doesn’t NASA
conduct exhaustive testing before they try to shoot off a rocket
with some men in it? Are the software-testing personnel incom-
petent, the testing procedures inadequate?

The answers to the last questions are “no” and “yes”: No, the
software-testing personnel are not incompetent; and yes, the
software-test procedures are inadequate. The inadequacy of soft-
ware testing is not the result of incompetence. No matter how
competent you are, it’s impossible to expose all of the bugs in a
program by means of exhaustive testing.

This fact does not apply just to large-scale software. You hold a
more down-to-earth example in the palm of your hand every time
you use an electronic calculator. These calculators are popular and
convenient, and they usually display correct results. But not al-
ways. Indeed, most popular calculators display wrong answers some
of the time. An American mathematician and computer scientist,
William Kahan, has documented, studied, and helped to correct
such problems for years. Here’s one of his examples, a compound
interest problem for financial calculators. The problem is called “A
Penny for Your Thoughts.”

A bank retains a legal consultant whose thoughts are so valuable
that she is paid for them at the rate of a penny per second, day and
night. Lest the sound of pennies dropping distract her, they are

MYTHS OF CORRECTNESS | 171

deposited into her account to accrete with interest at the rate of
10% per annum compounded every second. How much will have
accumulated after a year (365 days)?

You can solve such problems with financial calculators Jjust by press-
ing a few keys. In this case Kahan did so using ten different popular
calculator models. He got four different answers:

$331,667.00
$293,539.00
$334,858.18
$331,559.30

In calculator software as in space shuttle software, errors can result
from bugs that lead directly to wrong answers or from the gradual
buildup of inaccuracies in repetitive calculations. But, whatever the
cause of the errors, it isn’t possible to find all of them by testing.

To see why, let’s suppose that you've accepted a job with Cal-
cutronics—a new company that makes electronic calculators. Your
first assignment is to evaluate the prototype of a new model, a
standard calculator that handles eight-digit numbers, and see if it
works correctly. Like other electronic calculators, the Calcutronics
model is really a small computer. When you press a key to multiply,
divide, or compute compound interest, your action invokes a pro-
gram stored in read only memory (ROM). Even the addition key
initiates a program; the CPU does have an ADD instruction, but it
only adds one-digit numbers. The addition of two eight-digit num-
bers is accomplished by a program.

How should you go about evaluating the calculator? One approach
is simply to try every operation and see if the calculator gives the
correct results. This approach is called black box testing, probably
because black boxes are opaque and their contents have to be eval-
uated by means of externally observable characteristics. Because
black box testing focuses on the calculator’s actual behavior and
ignores its internal design, it seems to be the least biased and most
reliable way to proceed. Unfortunately, you would never finish.

Consider just the addition function. To test it exhaustively, you
would have to add every possible combination of eight-digit num-

172 | THE SACHERTORTE ALGORITHM

bers. Depending on how you like to see it written, there are 10%,
or 100,000,000, or one hundred million different eight-digit num-
bers. As for the number of different combinations of two eight-digit
numbers, there are 10%, or 10,000,000,000,000,000, or ten million
billion of them. So to test addition, you would have to add ten
million billion pairs of numbers. You might be tempted to cut this
in half since, for example, 8+2=2+8. But 8+2 and 2+8 are not
the same operations from the calculator’s point of view. The dif-
ference is just the order in which you enter the two numbers, but
that might result in their being handled differently, so you have to
try both cases.

How long the complete test would take depends on how fast you
work, but it’s doubtful that you could test more than one addition
per second. If you did one per second, forty hours per week, year
round, it would take about 1,300 million years to finish, give or take
a few million years. You might be able to save time by building a
machine that worked around the clock, punching in numbers and
photographing the answers for you to check during the day. Such
a machine would also take about one second per operation, but its
constant attention to the task would reduce the total time a lot.
With the machine, you could finish in about 320 million years.

You could bypass the mechanical operation of the keys, connect
a computer directly to the electronics inside the calculator, and use
the computer to try all the different combinations. But you still
wouldn’t be done in a reasonable amount of time. Even if the com-
puter could test one million additions per second (faster than most
calculators would allow), the total time would be about 320 years.
Job security, perhaps, but not exactly what Calcutronics was look-
ing for.

It might seem reasonable just to test the program with selected
input values scattered throughout the overall range and conclude,
if the program works properly for these values, that it also works
properly for every value in between. This approach could be valid
if a large number of input values were tried, provided that the
addition process is continuous—i.e., provided that a small change
in the inputs corresponds to a small change in the output. But we
can not assume continuity. For example, a program can easily treat
one particular input value in a totally different manner than it treats

MYTHS OF CORRECTNESS | 173

nearby values—all it takes is a single if-then statement. And if
you view the program as a black box, you can’t rule out the pos-
sibility of such if-then exceptions being inside. Just because the
result of

32000 + 767

is correct doesn’t mean that the result of
32001 + 767

is likely to be correct.

The calculator’s addition program had only two eight-digit inputs,
yet the total number of input possibilities made black box testing
impossible. It wasn’t even close. Black box testing would be ex-
hausting but not exhaustive—there just isn’t enough time. Fur-
thermore, most programs have even more input possibilities. The
conclusion is inescapable: black box testing is hopelessly inadequate
as the basis for any thorough evaluation of computer program cor-
rectness.

This conclusion and the arguments that lead to it are summarized
succinctly by a remark made by the Dutch computer scientist Edsger
W. Dijkstra. It is probably the most often-quoted statement in the
computer science literature:

Program testing can be used to show the presence of bugs, but never
to show their absence!

No matter how diligently you test computer programs, you cannot
test them completely. The point is really that simple. And that
profound.

That program testing is inadequate doesn’t mean that we should
eschew it—not to test a program before depending on it would be
foolish. But the inadequacy of testing does mean that the role of
testing is corroborative rather that definitive—testing can corro-
borate our belief in the correctness of a program, but we must have
other evidence. Where can that other evidence come from?

174 | THE SACHERTORTE ALGORITHM

If black-box testing is inadequate, the only alternative is to open
the box and examine what goes on inside. It follows that evidence
for a program’s correctness must somehow involve not just running
the program, but studying the program itself. Stated differently,
our belief in the correctness of a computer program must arise
substantially from intellectual arguments based on the program’s
written text. So far, so good. Unfortunately, if we cannot under-
stand the program’s text, we certainly cannot argue effectively
about its correctness, and therein lies a major problem.

The Curse of Flexibility

Fluency in English doesn’t guarantee that you can understand
every document that’s written in English. It all depends on the
clarity of the writing. Not so long ago, I struggled with a partic-
ularly unpleasant tax form. Neither my educational background nor
my ego encouraged me to give up, but after three hours I did.
Unfortunately I still had to fill out the form, so I called the special
phone number that the IRS maintains for citizens who need help.
Eventually I spoke to a real, live IRS agent and explained my
problem. Almost immediately, he laughed. “Oh that form! Listen,
nobody understands that form. Here’s what you do. . . .”

The situation with many computer programs is similar. A few
years ago some colleagues and I embarked on a software-
engineering project in which we proposed to demonstrate various
modern methods in a practical way by rebuilding the obsolescent
flight program of a naval aircraft. In the preface to our first report
on the project, we mentioned that the existing software, among its
other faults, “is not fully understood by the maintenance person-
nel.” This statement got us into trouble— not with the maintenance
personnel, who agreed with us emphatically, but with their project
sponsors, who happened also to be our sponsors. I never regretted
the statement, however. It describes accurately the program in
question, and many other programs as well.

There are many reasons for programs being hard to understand,
but at the root is the mixed blessing of flexibility. A computer’s
behavior can be changed radically by changes to its software. Whether
a programmer wants to fix a bug, change an existing function, or

MYTHS OF CORRECTNESS | 175

add a new function, it’s easy to bend the software accordingly. In
principle, this flexibility is a blessing; major changes can be accom-
plished quickly and at low cost. But the blessing is hard to receive.
Because it’s easy to make changes quickly and without considering
all the ramifications, software complexity can grow quickly, leading
to software that’s hard to read, hard to understand, likely to contain
more errors, and likely to require further modifications. These re-
sults are hard to avoid, and their effects can be crippling. In this
light, the computer’s flexibility looks less like a blessing and more
like a curse.

The computer’s flexibility is unique. No other kind of machine
can be changed so much without physical modifications. Moreover,
drastic modifications are as easy to make as minor ones, which is
unfortunate, since drastic modifications are more likely to cause
problems. With other kinds of machines, drastic modifications are
correspondingly harder to make than minor ones. This fact provides
natural constraints to modification that are absent in the case of
computer software. Such natural constraints bring discipline to ma-
chine design and construction as well as to machine modifications.
In the case of airplane construction, for example, feasible designs
are governed by the mechanical limitations of design materials and
by the laws of aerodynamics. There is a resulting, nature-imposed
discipline to the design process that helps to control complexity.
In the case of software construction there are no such limitations
or natural laws. This makes it too easy to build enormously complex
software. Indeed, the structure of typical software systems makes
the humorous complexities of Rube Goldberg’s fanciful machines
look elegant in comparison.

The flexibility of software also encourages the redefinition of
tasks quickly, often, and late in the development process. Imagine
that General Motors is 90 percent finished with a new car devel-
opment; deliveries are scheduled to begin in a few months. Suddenly
it’s decided to have the driver control the car from the back seat
and to include a separate air conditioning system for the trunk. It’s
a laughable scenario, but analogous ones are common in software
development. Software is the resting place of afterthoughts.

Software’s flexibility is deceptive and seductive. It encourages
programmers to plunge in, and they tend to do so; premature con-

RS s = o e S TE i gt e g e B rmpeant =
e Tt o e e

e e T e e SR A e

e

e s

e

e

176 | THE SACHERTORTE ALGORITHM

struction is a common software problem. Few would be foolish
enough to begin building a large airplane before the designers fin-
ished detailed plans. In the case of large computer programs, how-
ever, few are wise enough to wait. Because the software medium
appears to be so forgiving, it encourages us to begin working with
it too soon; we begin our attempts before we understand our tasks.
It’s extremely hard to build a large computer program that works
correctly under all required conditions, but it's easy to build one
that works 90 percent of the time. It’s also hard to build reliable
airplanes, but it’s not particularly easy to build an airplane that
flies 90 percent of the time.

With software, it’s easy to start out and hard to finish. Total
success is difficult because the flexibility of software facilitates par-
tial success at the expense of unmanaged complexity. And once a
program’s complexity has become unmanageable, each change be-
comes as likely to hurt as it is to help. Each new feature may
interfere with several old features. Each attempt to fix a bug may
create several more. The feeling of “one step forward, two steps
back” is a common one. The programmer facing poorly understood,
overly complex software is like Brer Rabbit facing the Tar Baby.

Like airplane complexity, software complexity can be controlled
by an appropriate design discipline. But to reap this benefit, people
have to impose that discipline; nature won’t do it. As the name
implies, computer software exploits a “soft” medium, with intrinsic
flexibility that is both its strength and its weakness. Offering so
much freedom and so few constraints, computer software has all
the advantages of free verse over sonnets; and all the disadvan-
tages.

Invisible Interfaces

A common and sensible approach to writing large programs is to
divide the problem into parts and write a separate program for
each part. Unfortunately, to do so is simple in principle but surpris-
ingly difficult in practice. Much of the difficulty arises because the
separate programs must interact to solve the overall problem—
some programs have to exchange information with other programs,
and some programs have to control other programs. These inter-

MYTHS OF CORRECTNESS | 177

actions take place across various interfaces that exist among the
programs.

Consider once again the magic-trick example. If you enter ‘0’
(zero) in response to the prompt

PLEASE ENTER A NUMBER BETWEEN 1 AND 10;,
the magic trick fails, and the program stops with the explanation

FATAL ERROR . .. REGISTER OVERFLOW AT AF45
712 547 234 232

777 234 342 455

209 487 439 332

>

This error can be viewed as the programmer’s fault for not having
checked the number that was entered before using it as a divisor.
But a subtler explanation is possible if more than one programmer
is involved. Suppose that the magic-trick problem were divided into
two parts, and that there were two programmers—one responsible
for a program that obtains a number from the user, the other
responsible for a program that performs the calculations involved
in the magic trick. Not knowing that the input value would end up
as a divisor, the first programmer may have assumed that the range
1 to 10 was a suggestion rather than a requirement. Meanwhile,
the second programmer knew that the input value would end up
as a divisor, but assumed that the first programmer wouldn’t permit
anything outside of the required range 1 to 10. The fatal error arose
because the two programmers made conflicting assumptions about
the number that was to be passed from one program to the other.
This error is a small example of an interface-related bug.

A larger and classic example is provided by the space shuttle
bug. Two separate programs—the primary flight software and the
backup flight software—were written in order to solve the overall
problem of flying the Orbiter reliably. Considered separately, they
both worked (at least from the viewpoint of the bug in question),
but a bug in their interface prevented the backup flight software
from starting up properly.

178 | THE SACHERTORTE ALGORITHM

Here’s another example of an interface-related bug, one that I
encountered on my Lisa. There are two Lisa programs that I've
been using regularly. One is the word-processing program that I'm
using to write this book; the other is a telecommunications program
that allows me to use the Lisa as a remote terminal connected by
telephone to computers elsewhere. Although these are separate
programs, they can be used together—you can switch back and
forth from one to the other and you can also transfer information
from one to the other. For example, you might switch from the
telecommunications program to the word-processing program, pick
up two or three paragraphs from a word-processing document stored
on the Lisa, switch back to the telecommunications program, and
transmit those paragraphs to the remote computer. The two pro-
grams worked together well until I needed to transmit not just a
few paragraphs, but an entire copy of a long document. I success-
fully transmitted the text in the prescribed manner, but when I
switched back to the word-processing program, it crashed.

The crash was inconvenient and somewhat damaging; I lost the
most recent changes I’d made to the document I was working on.
The crash, however, was graceful, and in this respect it exemplified
a good user-interface. For example, the crash was accompanied by
a series of error messages that were user-oriented instead of
programmer-oriented. The messages spoke of “technical difficul-
ties” (a term that covers a multitude of sins but is generally ac-
curate), they spoke of attempts to recover my document, and they
warned me that I might have lost the changes that indeed were
lost. And when the crash was finally over, only the word-processing
program was affected—I didn’t have to restart the Lisa’s operating
system, and the telecommunications program was still connected
properly to the remote computer.

The cause of the crash was a bug in the interface between the
word-processing program and the telecommunications program. The
two programs made conflicting assumptions about the use of the
Lisa’s main memory—when I used the word-processing and tele-
communication programs separately, the problem didn't arise be-
cause the programs didn’t have to share the available memory with
each other. But when I used them together, they did have to share.
It appears that this fact was overlooked somewhere in the telecom-

MYTHS OF CORRECTNESS | 179

munications program. When I transmitted a copy of the long doc-
ument, the telecommunications program had to use more memory,
and it ended up using a portion of the memory that was already
being used by the word-processing program. The resulting inter-
ference caused the word-processing program to crash.

The more complicated an interface, the more likely it is that
something will fall through a crack. Software interfaces are so error-
prone because it’s so easy to build complicated interfaces. The curse
of flexibility strikes again—it’s easy to make practically anything
depend on practically anything else. Moreover, the dependencies
can be subtle, and they’re almost impossible to detect by studying
the programs involved. For example, one program might work
properly only if another program can be relied on to finish its job
in a specific amount of time. Indeed, the shuttle bug originated
from just such an assumption. About a year before the first at-
tempted launch, a change was made to the primary flight software
that caused certain operations to take longer. This violated a subtle
assumption that was implicit in the backup flight software, but not
stated explicitly anywhere. The resulting bug eventually showed
up on launch day. This example shows the need for a broader def-
inition of “interface”: namely, a software interface between two
programs comprises all of the assumptions that the programs make
about each other.

Like software, physical machines such as cars and airplanes are
built by dividing the design problems into parts and building a
separate unit for each part. The spatial separation of the resulting
parts has several advantages: It limits their interactions, it makes
their interactions relatively easy to trace, and it makes new inter-
actions difficult to introduce. If I want to modify a car so that the
loudness of its horn depends on the car’s speed, it can be done, at
least in principle. And if I want the car’s air conditioner to adjust
automatically according to the amount of weight present in the back
seat, that too can be done—again, in principle. But in practice such
changes are hard to make, so they require careful design and de-
tailed planning. The interfaces in hardware systems, from airplanes
to computer circuits, tend to be simpler than those in software
systems because physical constraints discourage complicated in-
terfaces. The costs are immediate and obvious. No comparable con-

180 | THE SACHERTORTE ALGORITHM

straints operate in software systems. Indeed, the medium encourages
complicated interfaces. The total costs of a software interface, like
the costs of a hardware interface, grow quickly with complexity.
But the costs of a software interface are neither immediate nor
obvious.

Interface related problems are common in any computer pro-
gram, but their prevalence grows rapidly with the size of the pro-
gram. In computer programs that are designed and built by a large
team of programmers, all sorts of subtle assumptions are made,
and there’s plenty of opportunity for conflict. This is just one ex-
ample of the problems that beset programmers when they attempt
to scale up their previous successes.

Scaling Up Is Hard to Do

When I was a boy I liked to build model airplanes and fly them
at a park near my house. And it wasn’t so long ago that a friend
and I put together a twelve-inch-long rocket and fired it off glee-
fully. As small as these achievements were, I'm proud of them. But
I’'ve never attempted to build jumbo jets or space shuttles.

Such attempts would be absurd. Yet analogous attempts are
common in the case of computer software. Programmers are con-
stantly acting as if the skill and effort required to build small com-
puter programs can be scaled up easily to build large programs.
They’re wrong. '

I’'m as guilty as anyone. When I first went to work at the Naval
Research Laboratory, I was asked whether I had any experience
with simulation programs. Indeed, I had. As part of a political
science project that I did while a college senior, I had written a
FORTRAN program that simulated the international arms race. I
was quite impressed with this project, for which I recall receiving
an “A,” and I felt confident that I could handle the assignment that
was proposed for me: managing the development of a computer
program that would simulate in detail the electronic systems aboard
large naval ships. That my previous experience consisted of a small
program embodying the straightforward computation of a trivial
equation gave me only slight pause. After all, the principles were
the same—only the size of the program was different.

MYTHS OF CORRECTNESS | 181

I accepted the assignment along with someone else’s estimate of
what it would take: around $250,000 and two years. Both the money
and the time seemed excessive to me, but I thought it prudent not
to object. Soon thereafter I engaged a willing contractor, and within
six months or so I began receiving design documents and programs.
Some months after that, it became obvious that the project was in
serious trouble. I appealed for more money, which I received and
passed on to the contractor, who assigned more people to the task.
The trouble got worse.

What I needed then was more knowledge and not more money.
Among other things, I wish I had known about Brook’s Law:

Adding manpower to a late software project makes it later.

This is the high-tech equivalent of “too many cooks spoil the broth.”
It was first stated—at least in this eloquent form—by the American
computer scientist Frederick P. Brooks, Jr., a man who should
know. Fred Brooks has been described as “the father of the IBM
System/360,” a series of computers that was IBM’s main line from
the middle 1960s to the early 1970s. Brooks served as project man-
ager during the development of the system, and he directed the
development of 0S/360, its software operating system. 0S/360 was,
by previous standards, a huge undertaking. The project had now-
classic problems with time, effort, money, and reliability, and it
has become a famous symbol of the software crisis. As Brooks said
about just one of his decisions,

It is a very humbling experience to make a multi-million-dollar mis-
take, but it is also very memorable.

Like the problems of my simulation project, the problems of OS/
360 and countless other projects arose in large part because the
people involved underestimated the difficulty of scaling up their
previous efforts. Brooks put it this way:

The second system is the most dangerous system a man ever designs.

He called this the second-system effect, and the term has caught on.
Brooks was right when he said that “all programmers are opti-

182 | THE SACHERTORTE ALGORITHM

mists,” but where does this optimism come from? There is, I think,
a basic human urge to accomplish more. In engineering we see this
as an urge to scale up previous results. We see it in airplanes,
bridges, and buildings. We also see it in software. But the urge to
scale up the size or performance of physical objects is tempered by
natural and obvious impediments that require technological im-
provements in making and handling building materials. No matter
how much you may want to build a Boeing 747 instead of a Piper
Cub, a Saturn Booster instead of a V2 rocket, or the Brooklyn
Bridge instead of a stream crossing, the difficulties and the costs
of mistakes are sufficiently obvious to serve as effective restraints.

With computer software, it’s different. The obvious limitations
to performance are the computer’s speed and its storage capacity;
if both are doubled, the goal of doing twice as much looks easy to
achieve with software. But the appearance is deceptive, because
the process is highly nonlinear. Even if twice as much is possible
when you double a computer’s capacity, it becomes much more than
twice as hard to succeed.

Scaled-up software is not only harder to produce, it’s harder to
maintain. Clearly written software is important generally because
of the inadequacy of testing. But the importance of clarity grows
as software is scaled up because large programs that are used over
a period of many years tend to be maintained by programmers
other than those who wrote the program to begin with. When you
maintain a program you wrote yourself, your understanding of its
operation is assisted by your memory. When you maintain a pro-
gram that someone else wrote, your understanding must rely solely
on the program’s text.

Increased computer capacity attracts the programmer like a charm,
but its effects are tempered by the curse of flexibility. Faster com-
puters and larger memories are natural catalysts for the production
of complexity. To manage that complexity, we need appropriate
tools—something that’s analogous to the materials handling tech-
nology used in building physical objects. Such tools are themselves
made out of software. Examples include compilers for programming
languages, and various other programs that help us to write, ana-
lyze, and test software—generically such programs are called sup-
port software.

ot R

MYTHS OF CORRECTNESS | 183

Support software helps in managing complexity, but program-
mers also need help in avoiding excessive complexity in the first
place—they need something analogous to the discipline imposed by
the natural constraints on building physical objects. Here we must,
in the jargon of modern society, resort to “self-help.” We must
impose our own constraints, our own discipline. We can do so by
means of appropriate programming languages, programming meth-
ods, and documentation methods. Complexity can’t be eliminated,
but it can be managed; the software engineer’s job is to manage
unavoidable complexity and avoid unmanageable complexity.

Advances in electronics technology have made small personal
computers inexpensive and widely available. But although their
components are modern, their capacities and their software tools
often reflect twenty-year-old technology. Formative exposure to
these machines has some potential for harm. If people are unin-
formed and also gain their computer experience by using twenty-
year-old languages to write small programs on these small machines,
they will learn nothing about those aspects of computers that led
to the software crisis, and they may well be predisposed to follow
in the intellectual footsteps of their predecessors. Of course, those
who go on to bigger machines and bigger programs will soon learn
about the problems I've been discussing, as will those who are
educated in other ways. The rest, however, stand to be misled
profoundly about modern computer technology.

The Myth of Incorrectness

Of all the potential effects of the personal computer craze, the
one I find most troublesome concerns attitudes about software cor-
rectness. When people start writing their own bug-ridden pro-
grams, their experience may temper their harsh reactions to the
computer foul-ups around them. People know that to err is human,
and they may believe that programming errors are just another
example of human fallibility. This is a myth. But it’s a myth that
will be reinforced if people are exposed to such nonsense as I found
recently in the introductory manual of a popular personal computer:

q
|
i
{
i
!
|
1
1
i
i
‘

184 | THE SACHERTORTE ALGORITHM

“Bugs,” in computerese, refer mostly to imperfections in software.
These bugs are minor flaws that the people who wrote the program
couldn’t foresee. '

Statements like this breed familiarity with bugs, but not contempt.
Bugs are indeed flaws, but not all bugs are “minor flaws”—some
of them can kill people. Moreover, it’s not true that people couldn’t
foresee the bugs; what'’s true is that people didn’t foresee the bugs.

Programmers do make mistakes, but today’s software problems
are not statistical evidence for human fallibility, they are the un-
avoidable results of the programming languages and methods that
we use. The complexity of the computer programs we write has
grown faster than our ability to write them correctly. This mismatch
is one of the most important and difficult technical challenges of
our time.

