Improving the predictability of a popular software reliability growth model

Peter A. Keiller
Howard University
Washington DC.
Motivation for the Research

- Once a software product is shipped, it is estimated to cost over $10,000 to correct one software defect
- Assessment of software quality is often obtained using software reliability growth models
- There are over 40 software reliability growth models used by software development shops to access the quality of software
- There is currently no established “best model”
- There is currently little methodology for model selection
Purpose of the Study

Improve the estimation procedures and predictive performance for a member of an important large family of software reliability growth models.
The Research was arranged in two (2) stages:

• **Stage 1:** involved the collection of failure data and the selection of the popular family of software reliability models

• **Stage 2:** addressed the improvement in estimation and performance for a selected member of the software reliability models with four phases of analysis
Collection of Failure Data

- 41 sets of failure data were used in the research
- The data sets were compiled from published articles and correspondence with prominent researchers in the software reliability field in Europe and the U.S.A.
- The data sets represent a wide variety of software ventures ranging from commercial to military projects
Data Set Breakdown

<table>
<thead>
<tr>
<th>CPU TIME (Secs)</th>
<th>Number of Failures</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small(<50)</td>
<td>Medium (50-200)</td>
<td>Large (>200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small (0-100K)</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>(M:1;L:1)</td>
<td>(M:5;L:0)</td>
<td>(M:0;L:0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium (100K-10 mill)</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>(M:2;L:3)</td>
<td>(M:1;L:6)</td>
<td>(M:1;L:3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large (> 10 mill)</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(M:1;L:0)</td>
<td>(M:5;L:0)</td>
<td>(M:3;L:1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>20</td>
<td>9</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

M - obtained from Musa, L - obtained from Littlewood through CSR
Types of Software Reliability Models

- **Times Between Failure Models**

 Times between failures follow a distribution whose parameters depend on the number of faults remaining in the program during the interval. (K/L; L/V; J/M; …)

- **Failure Count Models**

 Number of faults detected in a given testing interval follow a Poisson Distribution (M/O; Shooman; G/O; …)
Nonhomogeneous Poisson Process

A class of models of the form:

\[\Pr\{N(t) = n \mid M(t)\} = \frac{M(t)^n}{n!} e^{-M(t)} \]

where \(N(t)\) is the number of software failures in \([0,t]\)

\[M(t) = \int_{0}^{t} \lambda(u) \, du = E[N(t)] \text{ or the Mean function} \]

\[\lambda(t) = \lim_{\Delta t \to 0} \frac{P\{N(t+\Delta t) - N(t) > 0\}}{\Delta t} = \frac{dM(t)}{dt} \]

is the failure intensity function.
Cumulative # Of Failures Versus % Test Time
Assessing Software Quality
With The NNHP

Given testing up to time t with h failures:

1. The probability of k additional failures in $[t, t+s]$ is

 $$
 \Pr\{N(t+s) = h+k \mid N(t) = h\} = \frac{[M(t+s) - h]^k}{k!} \cdot e^{-[M(t+s) - h]}
 $$

2. Probability distribution of time until the next failure, T_{h+1} is

 $$
 \Pr\{T_{h+1} > s\} = \Pr\{N(t+s) = h \mid N(t) = h\}
 $$
Selected Models
(Nonhomogeneous Poisson Process)

M1 Logarithmic: \(M_1(t) = \gamma \log (1 + \beta t) \), \(0 < \beta \)

M2 Pareto: \(M_2(t) = \gamma (1 - (1 + \beta t)^{-\alpha}) \), \(0 < \alpha, 0 < \beta \)

M3 Exponential: \(M_3(t) = \gamma (1 - e^{\eta t}) \), \(0 < \eta \)

M4 Weibull: \(M_4(t) = \gamma (1 - \exp (-\eta t^\alpha)) \), \(0 < \alpha, 0 < \eta \)

M5 Gen. Power: \(M_5(t) = \gamma ((1 + \beta t)^{-\alpha} - 1) \), \(-1 < \alpha < 0, 0 < \beta \)

M6 Power: \(M_6(t) = \gamma t^{\alpha} \), \(-1 < \alpha \leq 0 \)
\(0 < \gamma \)
Estimating Parameters

To completely define the appropriate NHHP model for a particular data set, the analyst must:

- Select a Mean function, $M(t)$
- Use a statistical estimation procedure to evaluate the unknown parameters.

Estimation Procedure used in the research
- Maximum Likelihood Estimation

Why?
- No substantial differences were detected when using other classical procedures (eg. Least Squares)
- Recommended by experts in the field: Littlewood, Musa, Jelinski, Moranda, Miller, etc.
The Research Question

Can the estimation procedure of the Goel-Okumoto software reliability model be modified to improve its predictive performance?
Research Stage 2

PHASE 1: Analysis of the failure data and the development of trend procedures.

PHASE 2: Selection of performance measures for the evaluation process in the research.

PHASE 3: Comparison and ranking of the procedures.

PHASE 4: Use of statistical analysis methods in the overall selection of procedures.
Failure Data Analysis

• **Exploratory Data Analysis**

 For each data set the following analyses were conducted:

 Basic plots

 Trend Tests
Trend Test
Arithmetic

\[\tau_j = \frac{1}{n} \sum_{i=1}^{j} x(i), \; j = 1, 2, 3, \ldots, n. \]

where \(j \) = \# of inter failure times;

\(x(i) \) are the inter-failure times

\[\Rightarrow \text{(Reliability growth is presumed if } \tau_j \text{ form an increasing series)} \]
Arithmetic Mean Of Cumulative Inter-Failure Times SYS5
Trend Test
Laplace

\[u(t_0) = \frac{1}{n} \sum_{i=1}^{n} s_i - \frac{t_0}{2} \]

where \(n = \# \text{ of failures in } (0, t_0) \);
\(s_i \) is the time of occurrence of failure \(i \)

\(\Rightarrow \) (Reliability growth is presumed if \(u(t_0) \) is negative)
Trend Procedures

1. **Procedure P₁**: Using all the data within the current interval \((0,s_k)\), fit the model.

2. **Procedure P₂**: Using the Laplace Test statistic, construct the interval that has the maximum size window with reliability growth within the current interval \((0,s_k)\).

3. **Procedure P₃**: Using the Laplace Test statistic, construct the interval that has the maximum reliability growth window within the current interval \((0,s_k)\).

4. **Procedure P₄**: Using the results from Procedure P₁ and Procedure P₃ as dynamic constraints, construct a window within the current interval \((0,s_k)\) that has improve reliability growth over the previous interval.
Laplace Trend Procedures

LAPLACE FACTOR FOR TREND PROCEDURES FOR ID: SYS5

- **PROCEDURE P_1**
 - LAPLACE FACTOR vs. % TEST TIME
 - Graph showing trend over 120% test time.

- **PROCEDURE P_2**
 - LAPLACE FACTOR vs. % TEST TIME
 - Graph showing trend over 120% test time.

- **PROCEDURE P_3**
 - LAPLACE FACTOR vs. % TEST TIME
 - Graph showing trend over 120% test time.

- **PROCEDURE P_4**
 - LAPLACE FACTOR vs. % TEST TIME
 - Graph showing trend over 120% test time.
• For a given data set, failures are observed until some time s_n
• The failure data up to time $s_c (< s_n)$ is used with the procedure to make maximum likelihood estimates of the model parameters
• The number of failures remaining, m, between (s_c, s_n) is estimated using $\hat{M}(s_n) - \hat{M}(s_c)$ and compared against the actual remainder, k
Cumulative # Of Failures
Versus % Test Time

$M(t)$

S_0

S_A

K

M
The relative predicted error, \(RE = (m - k)/k \), is computed.

This is repeated for different values to \(s_n \) and summed (BIAS).

The absolute value of \(RE \) at each value to \(s_n \) is summed (ARE).

The value of \(RE \) is squared at each value to \(s_n \) and summed (RESQ).

For each data set the performance values (ARE, BIAS, and RESQ) are computed, normalized and averaged.
Comparison of Relative Errors
Procedures A and D
Comparison Of Procedures

• For each data set and for a specific performance measure the procedures are compared and ranked. (weights of 1-4 are awarded - smallest performance error to the largest performance error)

• Hypothesis testing to determine the bias of the procedure is conducted

• For all unbiased procedures, a statistical Sign Test utilizing the average absolute relative errors (ARE) is conducted

• To account for both bias and variability, the Sign Test utilizing the average relative errors squared (RESQ) is also conducted
Findings

<table>
<thead>
<tr>
<th>Tests</th>
<th>Procedures</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis Test (BIAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_0 : Average relative errors = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_α : Average relative errors \neq 0</td>
<td></td>
<td>----</td>
<td>99%</td>
<td>----</td>
<td>99%</td>
</tr>
<tr>
<td>Sign Test (ARE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{Compared to Procedure P₁}</td>
<td>ND</td>
<td></td>
<td>99%</td>
<td>ND</td>
<td>95%</td>
</tr>
<tr>
<td>Sign Test (RESQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{Compared to Procedure P₁}</td>
<td>ND</td>
<td></td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>

---- : Bias
ND : No Difference
<table>
<thead>
<tr>
<th>Model</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goel-Okumoto</td>
<td>P1 4 P2 1 P3 3 P4 2</td>
</tr>
</tbody>
</table>
Average Percentage Improvement Over Procedure P_1

<table>
<thead>
<tr>
<th>Model</th>
<th>Performance Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goel-Okumoto</td>
<td>BIAS: 81%</td>
</tr>
<tr>
<td></td>
<td>ARE: 46%</td>
</tr>
<tr>
<td></td>
<td>RESQ: 57%</td>
</tr>
</tbody>
</table>
Conclusions

- Overall the research was successful in showing that we can improve the predictive performance of the Goel-Okumoto model.

- Procedures P_2 and P_4 performed better than procedure P_1 in both the Hypothesis Test (BIAS) and the Sign Test (ARE).

- Procedures P_2, P_3, and P_4 performed better than procedure P_1 in the Sign Test (RESQ).
Recommendations

- Additional procedures should be developed using the Laplace Trend statistic technique.
- Additional analysis is needed during the early stages of the failure data sets.
- Better optimization techniques are needed for the parameter estimates of the likelihood function.
- Additional classes of software reliability models should be tested using the research procedures.
- Additional performance measures must be introduced in the comparison process.
- A more systematic starting failure number approach should be developed.