Hardware Diversity Training Kit

- NRC Funded Project
- D3 Training for non-nuclear engineering students
- Diversified hardware to beat CCF/CMF
- Hardware kit is developed
- Ready for class activity

"nuclear renaissance" and "Nuclear Crisis"

- More electricity from NPP
 - Power Uprates
 - New Construction and Operating License (or "Combined License" [COL]) Applications
 - 18 COL applications for 28 new reactor units (as of 6/30/2010)
 - 104 Nuclear Reactors in 31 States
 - No New Reactor Since 1978
- Digital/Computer Control of NPP
 - Critical Importance of Reliability of H/W and S/W
 - Challenging issues of I&C, Security, Licensing, Safety Interfaces
- Safety?
 - More important now with Japanese NPPs

Defense-in-Depth

- NPPs generally heavily reliant on Redundancy
 - Components still fail anyway
 - Failure could be dangerous
 - Resiliency by Redundancy
 - Diversity over Redundancy due to CMF
- Instrumentation and Control
 - Analog

 Digital
 - Failures in Computers due to CCF
 - How do you protect against Failure?
 - Is having multiple Enough?
 - Importance of Independence/Diversity

NRC sponsored Project of Nuclear Science course development

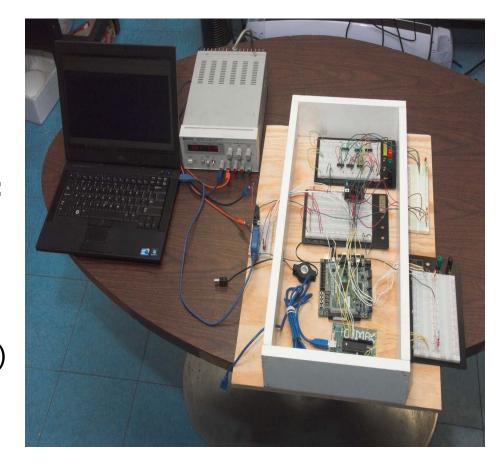
- Objective
 - Hardware (Equipment) Diversity against CMF in H/W and S/W
 - Exposure to Nuclear Science and Engineering
 - Exposure and familiarity to Hardware and Software and Safety issues of Digital I&C in NPP
- Target
 - All Non-nuclear engineering students at Howard University
 - First Offering: Fall 2011 (Course title: Computers and Nuclear Energy)
- U.S. NRC Education Grant: No. NRC-27-10-1123

Diversity

- What is Diversity?
 - Diversity is the use of two or more mutually exclusive means of performing the same function.
 - Diversity is a principle in instrumentation systems of sensing different parameters, using different technologies, using different logic or algorithms, or using different actuation means to provide several ways of detecting and responding to a significant event.
 - Diversity types: Human diversity, design diversity, software diversity, functional diversity, signal diversity, and equipment diversity.
- How to make diversified Computer Hardware Kit?
 - Build a Kit of Four 'diverse' architectures

Diversity in Computers

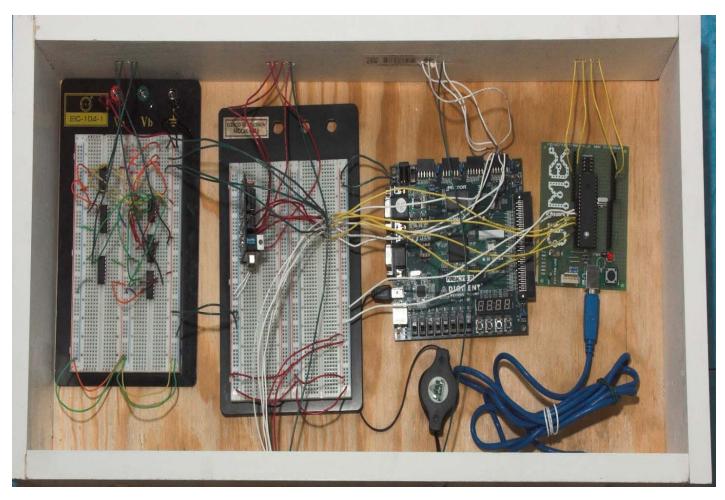
- Diversity in the kit
 - FPGA, Harvard, PIC, and, PLA
- Is the kit really diverse or just redundant?
 - Criteria for diversity (in Computer Systems)
 - Different manufacturers of fundamentally different designs
 - Same manufacturer of fundamentally different designs
 - Different manufacturers making the same design
 - Different versions of the same design


Training Kit

- Equipment diversity is the use of different equipment to perform similar safety functions.
- "Different" means sufficiently unlike as to significantly decrease vulnerability to common failure.

Architecture	Manufacturer	Compiler/ Interpreter	Language
PIC- Peripheral Interface Controller	Microchip	MPLAB	Assembly Language
BS 2 — BASIC Stamp 2	Parallax	BASIC	Basic Editor
FPGA - Field- programmable Gate Array	Digilient	XILINX	VHDL

Training Kit


- Completely different architectures: one fails, the other works (Independent)
- Introducing CCF into Set-up:
 - Power (Power spikes/ surges)
 - Humidity/ Moisture
 (Unusual moisture build up)
 - External Magnetic Field

Implementation

- PLA
- BS 2
- FPGA
- PIC

Another BS 2
 for
 Instrumentation
 Simulation/
 Scenario
 Generation

Scenario Based Testing

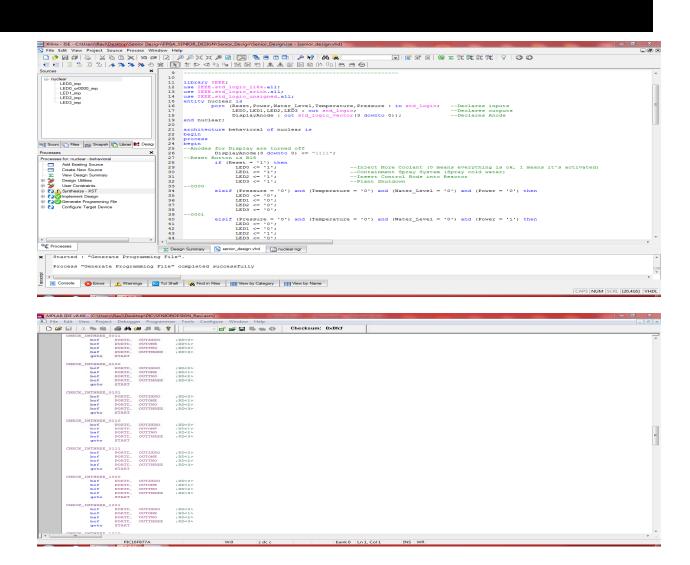
INPUTS

- -Pressure
- -Temperature
- -Water Level (First three for the reactor)
- -Power (at the pumps)

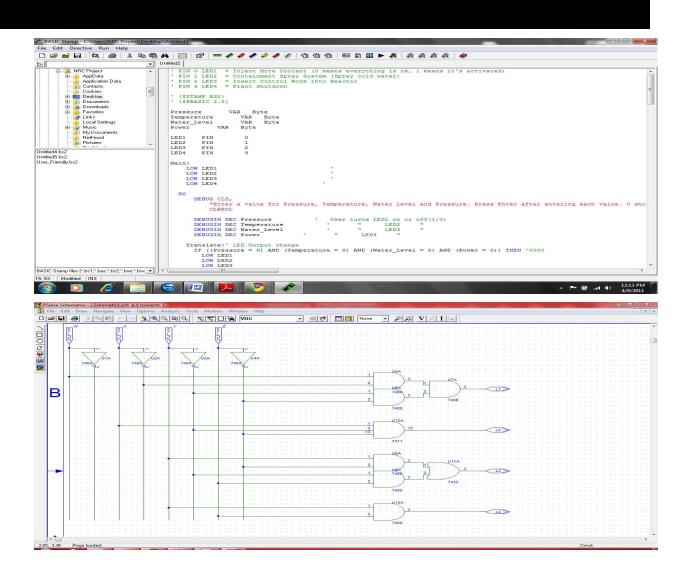
OUTPUTS

LED 1 - Injection of more coolant

LED 2 - Containment spray system (Spray Cold water containing Boron)


LED 3 - Scram control (Drop Zircon Rods)

LED 4 is (Injection of Neutron Poison Solutions into the plant)


Different Coding Environments

- NEXYS 2 DIGILIENT FPGA (XILINX)
- PIC (MPLAB)

Different Coding Environment

- PARALLAX BASIC
 Stamp® 2 (Basic
 Stamp 2 Editor)
- PLA (PSPICE)

Class Activity

- Form Different Teams based on background and strength
 - FPGA, BS2, Logic, and PIC programming Teams
- Coding practice
 - Tutorial for those who do not have background
- Testing with a CCF
- Learn the lessons from the test