EECE499-01: Computers and Nuclear Energy

Charles Kim

Fall 2011

Defense in Depth

- Military Strategy
 - Front Line
 - Forward Defense
 - Defense-in-depth

- Industrial Use
 - Computing
 - Security
 - Nuclear Power
 - Aircraft
 - etc
Defense-in-Depth as Military Strategy

- Military Defense
 - Forward Defense --- Roman army
 - Garrison posts in Barbarian territory
 - Battle Fields – out of Roman territory
 - Expensive
 - Front Line
 - Everything at the border line
 - Win or Lose
 - Defense-in-Depth
 - Thin Presence in the border line – just to delay the advance of enemy
 - Strong defense line behind
 - Modestly expensive

Defense-in-Depth in Information Assurance

- an information assurance (IA) concept
- conceived by the National Security Agency (NSA) as a comprehensive approach to information and electronic security
- multiple layers of security defense are placed throughout an information technology (IT) system
- provides redundancy in the event a security defense fails or a vulnerability is exploited

- Examples
 - Physical security (e.g. deadbolt locks)
 - Authentication and password security
 - Hashing passwords
 - Anti virus software
 - Firewalls (hardware or software)
 - IDS (intrusion detection systems)
 - VPN (virtual private networks)
 - Logging and auditing
 - Biometrics
 - Timed access control
 - Software/hardware not available to the public (but see also security through obscurity)
Defense-in-Depth in Safety-Critical Industry

Fire Fighting:
- Instead of focusing on fire prevention only;
- It also requires the deployment of fire alarms, extinguishers, evacuation plans, mobile rescue and fire-fighting equipment and even nation-wide plans for deploying massive resources to a major blaze.

Aircraft:
- Emphasizes redundancy - a system that keeps working when a component fails - over attempts to design components that will not fail in the first place.
- An aircraft with four engines will be less likely to suffer total engine failure than a single-engined aircraft no matter how much effort goes into making the single engine reliable.

Nuclear engineering and nuclear safety:
- Practice of having multiple, redundant, and independent layers of safety systems for the single, critical point of failure - reactor safety system.
- Reactor Safety System: reduce the risk that a single failure of a critical system could cause a core meltdown or a catastrophic failure of reactor containment.

Defense-in-Depth in NPP

Defense-in-depth is the requirement that nuclear reactors should have
- Multiple, independent barriers in place to prevent injuries to the public and damage to the environment.
- The presence of a pressure-resistant, leak-tight containment.
- The maintenance of comprehensive emergency planning.
- Mitigate the impact of a severe accident with core damage.

The presence of multiple barriers is a hedge against uncertainty and an acknowledgement that the understanding of the performance of any one barrier is incomplete.
Defense-in-Depth in NPP and DI&C

- Safety System must reliably satisfy the functional requirements
 - Single-failure proof (no single failure is to prevent safety system actuation if needed, nor shall a single failure cause a spurious activation)
 - How to achieve this goal?
 - By Redundancy
 - Achieve the functional goals in the presence of component failures
 - Active redundancy and Standby redundancy

Redundancy

- Active Redundancy
 - Multiple identical components operating in parallel
 - The multiple outputs are compared or selected in some way to determine which outputs will be used
 - (ex) Boolean Logic; 2-out-of-3

- Standby (or backup) Redundancy
 - Make spares available to replace failed components
 - (ex) Backup generator

- Component duplication - Same function and identical component
 - Protection against independent failures caused by physical degradation (wear-out)
Common Cause Failure

- The benefit of component duplication can be defeated by common-cause or common-mode failures
 - CCF: multiple components fail by the same cause
 - CMF: multiple components fail the same way (ex) stuck open.
- CCF and CMF occur
 - because the assumption of independence of the failures of the components is invalid
 - Common external or internal influences
 - Design error

Protection against CMF - Diversity

- Design Diversity:
 - components with different internal design (but performing the same function) are used.
 - (ex) Multiple versions of software written from the equivalent requirements specifications - same function by different algorithms →(ex) two different ways of determining of two number are the same
 - (ex) Multiple different components differently achieving the design requirement
DIVERSITY

- **Functional Diversity**
 - Components made by different requirements perform different functions at the component level while satisfying the upper level system requirements.
 - Different Principle of operation or physical principles to satisfy the same or different system-level requirements.
 - (ex) one program checks if two numbers are equal; another program selects the larger of 2 numbers.
 - (ex) One uses control rods to trip a reactor (based on the ratio of reactor power and flow); another uses Boron concentration to trip a reactor (based on coolant temperature).
 - Most important issue: Independence.

Diversity and Defense-in-Depth (D3) in NRC

- Diversity and Defense-in-Depth (D3) established in 1990’s.
- Adding diverse systems and/or defense-in-depth features can mitigate the effect of common cause failure (CCF).
- Difference between Defense-in-Depth and Diversity.
U. S. Patent Application

Title: DIVERSITY AND DEFENSE-IN-DEPTH SIMULATION APPARATUS

Inventors:
- Yuan-Chung Yu, Longtian Shiang (TW)
- Mao-Sheng Tseng, Longtian Shiang (TW)
- Hsiu-Wen Huang, Longtian Shiang (TW)
- Tsung-Chieh Cheng, Longtian Shiang (TW)

Assignee: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH, Iao-yuan (TW)

Publication Classification
- Int. Cl. GB6G 7/54
- GB6G 7/66
- US. Cl. 703/18: 700/202

Abstract:
A simulator system transfers parameters between a power plant simulator and a safety control simulator. Problems concerning software common mode failures, interface interactions errors, software failure complexity, and so on, are evalu-
Guidelines in Nuclear Industry

Guidelines in Other Industries

- FAA: RTCA (Radio Technical Commission for Aeronautics) DO-178B Software Considerations in Airborne Systems and Equipment Certification
- DOD: MIL-STD-882C System Safety Program Requirements
- FDA: Review Guidance for Computer Controlled Medical Devices Undergoing 510(k) Review
Homework #5

- Find Diversity examples in the real life and describe it and classify if it is functional diversity or design diversity, and in what sense?
- 1-page with same format and instruction as usual
- Due: October 13

Diversity Practice

- Kit