
faculty
Typewritten Text
WWW.MWFTR.COM

Definition & History
Reliability Modeling
Faults and Failures
Software Reliability Models
Failure Data
Problems
Conclusion
Questions

Term Description

System failure An event that occurs at some point in time when
the system does not deliver a service as expected
by its users

System error An erroneous system state that can lead to system
behaviour that is unexpected by system users.

System fault A characteristic of a software system that can
lead to a system error. For example, failure to
initialise a variable could lead to that variable
having the wrong value when it is used.

Human error or
mistake

Human behaviour that results in the introduction
of faults into a system.

Failures are a usually a result of system errors that
are derived from faults in the system
However, faults do not necessarily result in system
errors
◦ The faulty system state may be transient and ‘corrected’

before an error arises
Errors do not necessarily lead to system failures
◦ The error can be corrected by built-in error detection and

recovery
◦ The failure can be protected against by built-in protection

facilities. These may, for example, protect system resources
from system errors

Fault avoidance
◦ Development technique are used that either minimise the

possibility of mistakes or trap mistakes before they result
in the introduction of system faults

Fault detection and removal
◦ Verification and validation techniques that increase the

probability of detecting and correcting errors before the
system goes into service are used

Fault tolerance
◦ Run-time techniques are used to ensure that system faults

do not result in system errors and/or that system errors do
not lead to system failures

You can model a system as an input-output
mapping where some inputs will result in
erroneous outputs

The reliability of the system is the probability that a
particular input will lie in the set of inputs that
cause erroneous outputs

Different people will use the system in different
ways so this probability is not a static system
attribute but depends on the system’s environment

IeInput set

OeOutput set

Program

Inputs causing
erroneous outputs

Erroneous
outputs

Removing X% of the faults in a system will not
necessarily improve the reliability by X%. A study
at IBM showed that removing 60% of product
defects resulted in a 3% improvement in reliability
Program defects may be in rarely executed sections
of the code so may never be encountered by users.
Removing these does not affect the perceived
reliability
A program with known faults may therefore still be
seen as reliable by its users

Software reliability (SR):
◦ “The probability that software will not cause the

failure of a system for a specified time under
specified conditions.”

Toys R Us Double Charges Black Friday Shoppers
New Hampshire Man Charged 23 Quadrillion Dollars for a
pack of smokes
McAfee Software Glitch Proves Costly
Apple to issue software fix for lingering iPad Wi-Fi problems
Weapon Software Glitch Hits Close to Home
Toyota Slapped With $32.4 Million Fine for Mishandling
Recalls
Verizon Wireless to refund $50 million over software glitch
Faulty software costs NY $114M
Chase Web crash locks out 16.5 million online customers
Airborne Laser Test Failure Blamed on Software Error

Wrong requirement: not what the customer
wants
Missing requirement
Requirement impossible to implement
Faulty design
Faulty code
Improperly implemented design

In the early 90’s hardware was dominant
driver of system failure

By 1997software became the dominant driver
of system’s reliability (Everett, Keene and Nikora 1998)

Software driven outages were exceeding
hardware driven outages by a factor of ten (Keene
1997)

Early approaches based on modifications of
models derived in Hardware reliability field.

Comparison of the hazard curves for hardware and software
respectively

http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/

The first published approach dedicated to
SRM was by G. R. Hudson (Hudson 1967)
Most authors credit (Jelinski and Moranda
1972) as the major step.
Jelinski and Moranda suggested stochastic
process.
Since the early 1970’s over 80+ models have
been proposed in literature

Times Between Failure Models

Times between failures follow a distribution

whose parameters depend on the number of

faults remaining in the program during the

interval.
(K/L; L/V; J/M; …)

Failure Count Models

Number of faults detected in a given testing

interval follow a Poisson Distribution

(M/O; Shooman; G/O; …)

Time of failure
Time interval between failures
Cumulative failures experienced
Failures experienced in a time interval

320. 14390. 9000. 2880. 5700.

21800. 26800. 113540. 112137. 660.
2700. 28793. 2173. 7263. 10865.
4230. 8460. 14805. 11844. 5361.
6553. 6499. 3124. 51323. 17010.
1890. 5400. 62312. 24826. 26335.
363. 13989. 15058. 32377. 41632.
4160. 82040. 13189. 3426. 5833.
640. 640. 2880. 110. 22080.

60654. 52163. 12546. 784. 10193.
7841. 31365. 24313. 298890. 1280.
22099. 19150. 2611. 39170. 55794.
42632. 267600. 87074. 149606. 14400.
34560. 39600. 334395. 296015. 177399.
214622. 156400. 166800. 10800. 267000.
2098833. 614080. 7680. 2629667. 2948700.
187200. 18000. 178200. 487800. 639200.
334560. 1468800. 86720. 199200. 215200.
86400. 88640. 1814400. 4160. 3200.

199200. 356160. 518400. 345600. 31360.
265600.

Most models follow the basic Concave or S-shaped curve
as seen in Figure below

Other work in the field have suggested a
unification of different NHPP models (Huang, Kuo, et al.

2000) (Gokhale, Philip, et al. 1996) (Pfefferman and Cernuschi-Frias December 2002).
Super Model use one of multiple models over
different phases. (Keiller and Mazzuchi 2005)

1. Defining and collecting necessary failure metrics.
2. An analysis of failure data to make sure that its

reliability is actually growing and that the data
meets the assumptions of the models to be
assessed.

3. Identification of suitable models and
parameterization of the mean value functions.

4. Validating the result of the models using a
goodness of fit test.

5. Computation of target metrics.
6. Using computed metrics for tradeoff analysis.

No standardized metrics or methods that
address how well a model should fit data.
◦ Traditional Goodness of Fit methodologies

(Kolmogrov Smirnov Test)
◦ Sum of Square Errors (SSE) (Zhang 2000)

◦ Loglikelihood
◦ Akaike’s information criterion (AIC) (Akaile 1974)

◦ Bayesian information criteria (BIC) (Shibata, Rinsaka and Dohi 2006)

Littlewood’s metric “U-Plot”
Prequential Likelihood (Abdalla-Ghally, Chan and Littlewood 1986).
U-plot and Prequential Likelihood in
combination (Brocklehurst and Littlewood 1992)

Y-plot (Keiller and Miller 1991).

“Early software reliability prediction models
are often too insubstantial, seldom
executable, insufficiently formal to be
analyzable and typically not linked to the
target system.” (M. R. Lyu May 2007).

Data quality.
Many prediction models tend to model only
part of the underlying problem. (Fenton and Martin 1999)

The field of SR is still maturing there is no
common body of knowledge. (Benlarbi and Stortz 2007).

No model can truly, fully represent the
totality of what is being modeled.
A lack of acceptance of SRM has hurt the SR
modeling community because failure data
collection is still seen as an unnecessary
expense in some realms.
Corporate entities that are successfully
developing reliable software see their
techniques, approaches and data as trade
secrets.

Characteristics of the software topology,
development process and the software itself
do not accompany the data.
The traditional assumptions of Software
Reliability models may not hold true because
corrections or changes to some functions
may not be possible.

It is still difficult to assign rank or measure to
the quality of a company’s software
development process.
It is still very hard to understand and model
the relationships between process and
software quality.

“Future of software reliability modeling is
compound models and tools that can predict
and assess the reliability of software from
start to finish incorporating the ‘best of
breed’ in the predictive as well as assertive
models”. (M. R. Lyu May 2007)

There is no “Silver Bullet” for SRM.
Many authors have shown that the use of
modeling can enhance the decision making
process.
Need for a greater simplification of the
modeling process by means of automated
tools so that models are more readily
available to the layman

