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EECE202 NETWORK ANALYSIS I              Dr. Charles Kim 
 
Class Note 21:  Inductors and Capacitors  
 
A. Inductor 
1. An inductor is a passive element designed to store energy in its magnetic field.  
2. A practical inductor is usually formed into a cylindrical coil with many turns of conducting 

wires.  

 
 

 
 
3. The voltage across an inductor is directly proportional to the time rate of change of the current 

through the inductor: 
dt

tdiLtv )()( = , where L is the constant of proportionality called the 

inductance of the inductor, which is the property whereby an inductor exhibits opposition to 
the changes of current flowing through it. 

4. The unit of inductance is the henry (H), named in honor of the American inventor Joseph 
Henry (1797-1878).   1 henry equals 1 volt-second per ampere.   

5. The current-voltage relationship is:  +=
t

t
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6. The energy stored in an inductor, since the power delivered to an inductor is i
dt
diLvip ⋅== , 

can be: 222
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7. Important properties of an inductor. 

(a) Note that, from 
dt

tdiLtv )()( = , the voltage across an inductor is zero when the current is 

constant. ----> An inductor acts like a short circuit to DC. 

(b) Note that, from  +=
t

t

tidyyv
L

ti
0

)()(1)( 0 , the current through an inductor cannot change 

instantaneously. 

(c) Note that, however, from 
dt

tdiLtv )()( = , the voltage across an inductor can change 

abruptly. 
(d) An ideal inductor does not dissipate: the energy stored in it can be retrieved at a later 

time.  The inductor takes power from the circuit when storing energy and delivers power 
to the circuit when returning previously stored energy. 
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8. The equivalent inductance of series-connected inductors is the sum of the individual 

inductances:  
=

=
n

k
keq LL
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9. The equivalent inductance of parallel inductors is the reciprocal of the sum of the reciprocals 

of the individual inductances: 
=

=
n

k keq LL 1

11  

 
B. Capacitors 
1. A capacitor is a passive element designed to stored energy in its electric field. 
2. A capacitor consists of two conducting plates separated by an insulator (or dielectric).  In 

many applications, the plates may be aluminum foil while the dielectric may be air, ceramic, 
paper, or mica. 

3. Commercially available capacitors are, by the dielectric materials they are used of, polyester 
capacitors (light and stable), film capacitors, and electrolytic capacitors (high capacitance). 

 

 
4. When a voltage source (v) is connected the a capacitor, the amount of charge stored (q) is 

directly proportional to the applied voltage: Cvq = , where C, the constant, is the capacitance 
of the capacitor.  In other words, capacitance is the ratio of the charge on one plate of a 
capacitor to the voltage difference between the two plates. 

5. The unit of the capacitance is the farad(F), in honor of the English physicist Michael Faraday 
(1791-1867).  1 F = 1 Coulomb/Volt. 

6. The equation Cvq = can now changed, since 
dt
dqi = , to 

dt
dvC

dt
Cvd

dt
dqi === )( . 

7. Voltage-current relationship can be obtained by integrating both sides of 
dt
dvCi = : 

 +=
t

t

tvdxxi
C
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0

)()(1)( 0  

8. The energy stored in a capacitor, since the instantaneous power delivered to the capacitor is 

dt
dvvCvip == , can be:  222

2
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9. Important properties of a capacitor 

(a) Note that, from 
dt
dvCi = , when the voltage across a capacitor is not changing with time, 

the current through the capacitor is zero. ----> A capacitor is an open circuit to DC. 

(b) Note that, from  +=
t

t

tvdxxi
C

tv
0

)()(1)( 0 , the voltage on the capacitor cannot change 

abruptly; instead, the voltage must be continuous. 



 3

(c) However, the current through a capacitor can change instantaneously. 
(d) An ideal capacitor does not dissipate energy.  It takes power from the circuit when 

storing  (or charging) energy and returns previously stored energy when delivering (or 
discharging) power the circuit.  

10. The equivalent capacitance of series-connected capacitors is the reciprocal of the sum of the 

reciprocals of the individual capacitances: 
=

=
n

k keq CC 1
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11. The equivalent capacitance of parallel-connected capacitors is the sum of the individual 

capacitors: 
=

=
n

k
keq CC
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C. Summary Table for Inductors and Capacitors 
 

 Inductor Capacitor 
Voltage 
Equation dt

tdiLtv )()( =   +=
t

t

tvdxxi
C

tv
0

)()(1)( 0  

Current 
Equation  +=

t

t

tidyyv
L

ti
0

)()(1)( 0 , dt
tdvCti )()( =  

Power Equation )()()( titvtp ⋅=  

or 
dt

tditiLtp )()()( ⋅⋅=  

or  

})0()(1{)()(
0
 +⋅=
t

idyyv
L

tvtp  

)()()( titvtp ⋅=  

or 
dt

tdvtvCtp )()()( ⋅⋅=  

or  })0()(1{)()(
0
 +⋅=
t

vdxxi
C

titp  

Energy 
Equation ])0()([

2
1 22 itiLw −⋅=  ])0()([

2
1 22 vtvCw −⋅=  

Series 
Combination 

=

=
n

k
keq LL

1
 

=

=
n

k keq CC 1

11  

Parallel 
Combination 

=

=
n

k keq LL 1

11  
=

=
n

k
keq CC
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Behavior at DC Short Circuit Open Circuit
Variable that 
cannot change 
abruptly 

Voltage, v Current, i 

 
 
D. The Rest of the Operational Amplifier1 
1. In the previous chapter, we discussed about the following op amp circuits: summer and 

subtractor. 
 

1 This subject is further discussed in ELEG 301 Network Analysis II.  
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2. We will discuss two more op amp circuits that had been widely used in analog computers: 
integrator and differentiator. 

3. An integrator is an op amp circuit whose output is proportional to the integral of the input 
signal. 

(a) Consider a circuit below.  This is the familiar inverting amplifier circuit, replacing the 
feedback resistor by a capacitor.  

 
 

(b) A node-voltage equation at node 1: 0=+ CR ii , where 
s

s
R R

vi −= 0  and 
dt

dvCi o
C −= . 

(c) Therefore, the current equation becomes: 
dt

dvC
R
v o

s

s −= ----> dtv
RC

dv so
1−=  

(d) Integrating both sides gives −=−
t

soo dttv
RC

vtv
0

)(1)0()(  

(e) Assuming vo(0)=0 (discharging the capacitor prior to the application of the input 

signal), we have  −=
t

so dttv
RC

tv
0

)(1)( . 

4. A differentiator is an op amp circuit whose output is proportional to the rate of change of the 
input signal. 

(a) Consider another circuit shown below. 

 

(b) Applying KCL at node 1: 0=+ CR ii  
R

vi o
R

−= 0  and 
dt
dvCi s

C −= . 

(c) Therefore, we have: 
dt
dvC

R
v so −=  ----> 

dt
tdvRCtv s

o
)()( −=  

(d) Caveat: Differentiator circuits are electronically unstable because any electrical noise 
within the circuit is exaggerated by the differentiator.  Hence, the differentiator circuit is 
not as useful and popular as the integrator.  It is seldom used in practice. 
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E. Example Problems 
1. The voltage at the terminals of the 300 uH inductor of the circuit (a) is shown in (b). The 

inductor current i is known to be zero before time t=0.  Derive the expression for i (for t>0) 
and sketch it.  

 
SOLUTION: 
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2.  Initially there was no energy stored in the 25 H inductor when it was placed across the 
terminals of the voltmeter (with full-scale of 50 V).  At t=0, the inductor was switched 
instantaneously to position b where it remained for 1 second before returning instantaneously 
to position a.  What will be the reading of the voltmeter be at the instant the switch returns to 
position a?   The d’Arsonval movement has the rating of 50mV@ 1mA.   Note that Vs=20 
[mV].  

 
SOLUTION: 
(a) Rm=50 and Rv=49950  --->Req=50 k 
(b) 

 
(c) Therefore, reading is: 40

1
8.050 =⋅ [V] 
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3. The two series-connected capacitors are connected to the terminals of a black box at t=0.  The 
resulting current i(t) for t>0 is known to be teti 2500900)( −= [uA] 

(a) How much energy was initially stored in the series capacitors? 
(b) Find v1(t) for t>0 
(c) Find v2(t) for t>0 

    (d)  find v(t) for t>0 
(e) How much energy is delivered to the black box in the time interval 0<t<∞? 

 
 
SOLUTION: 

(a) From  ])0()([
2
1 22 vtvCw −⋅=  and v(t)=0 at t=0 

 
 
(b) and (c) 

 
(d)  C=[20*30]/(20+30)=12 nF 

 
(e) 

 
]

]})0()([
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Since v(∞)=0 (see the equation for v(t) ) and v(0)=30 V 
 

] 4.5])0(0[
2
1]})0()([

2
1{)0()( 222

0 −=−⋅=−∞⋅=−∞=∞ vCvvCwww [uJ] 

 
Therefore 5.4 uJ is delivered to the box. 
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4.  At t = 0, a series-connected capacitor and inductor are placed across the terminals of a black 

box.  For t>0, it is know that teti t
o 60sin)( 80−= [A].  Find v0(t) for t>0, if vc(0)=  300 [V] 

 
 
 
 

NOTE: Integration formula:   )]sin()cos([)cos( 22 bxbbxa
ba

edxbxe
ax

ax +
+

=  

           )]cos()sin([)sin( 22 bxbbxa
ba

edxbxe
ax

ax −
+

=  

SOLUTION: 
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ELEG202 Network Analysis I      Dr. Charles Kim   
 
Note21-A: Inductor Note Supplement 
 

Practical Problem 
I. Background 
1. ICs are rectangular pieces of silicon.   
2. Electrical contact between the silicon and metals pins are made with fine gold wire, called 

wire bond (Fig. A). 
3. The chip is then coated in plastic to protect from physical damage. (Fig. B) 
4. Since wires are not perfect conductors, they have resistance and inductance. 
5. In most cases, wire resistance and inductance are negligibly small. 
6. However, the current (being used by the chip (or processor)) changes quickly, wire inductance 

can play a significant role. 
 

 
II. Analysis 
1. We now examine the influence of the small wire inductance to the voltage across a high speed 

microprocessor. (See Fig. C for an equivalent circuit with the wire bond modeled by the 10 
nH inductor) 

2. The chip supply voltage is represented by 5V voltage source. 
3. The current i(t) represents the current being used by the microprocessor.  And this current 

demand changes, as the microprocessor executes various functions.  An example of current 
change is shown in Fig. D. 

 
4. Then, voltage across the chip can be expressed by: 
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dt
tdi

dt
tdiLvtV Lchip

)(10105)(55)( 9 ⋅⋅−=−=−= −  

5. 
dt
tdi )(  calculation and chip voltage table for 4 time periods: 

 
 0   -   4 ns 4   -  12 ns 12  -  16 ns 16  -  20 ns 

t
i

dt
tdi

∆
∆=)(  8105.2

4
5.05.1

×=
− 0 8105.2

4
5.15.0 ×−=−  

0 

dt
tdiL )(

⋅  
2.5 0 -2.5 0 

)(tVchip  2.5 5.0 7.5 0 
 
6. The resulting chip voltage is illustrated in Fig.E.   As we see, the voltage swings much and the 

chip voltage is not stable at all. 
7. Then, how can we have a more stable chip voltage?   
8. The answer comes from the chip voltage equation.  If we reduce the inductance L, then the 

sudden voltage shot or drop would be reduced. 
9. Let’s add one more wire bond between the chip and the metal pin. (See Fig. F) 
10. See Fig. G. for a new equivalent circuit.   
11. Then, the current will be equally divided in to two inductors.   

12. 
dt
tdi )(  calculation and chip voltage table for 4 time periods: 

 0   -   4 ns 4   -  12 ns 12  -  16 ns 16  -  20 ns 

t
i

dt
tdi

∆
∆=)(  81025.1

4
25.075.0 ×=− 0 81025.1

4
75.025.0 ×−=−  

0 

dt
tdiL )(

⋅  
1.25 0 -1.25 0 

)(tVchip  3.75 5.0 6.25 0 
 
13. The resulting chip voltage is illustrated in Fig.H.   As we see, the voltage swings less and the 

chip voltage is more stable.  By adding more wire bonds, we could further stabilize the chip 
voltage. 
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ELEG202  NETWORK ANALYSIS I              Dr. Charles Kim 
 
Class Note 23:  Transient Circuits 
 
 
A. Transient Circuits 
 
1. We now consider circuits that are in transition from one state to another. 
2. The state transition occurs when we suddenly apply to, or instantly remove from, a circuit the 

source of energy. 
3. The analysis of the circuit behavior in the transition phase is called a transient analysis. 
4. The transient behavior of circuits is affected by the presence of capacitor or inductor, or both, 

since these two elements can store energy and releasing it over some interval of time. 
5. A circuit comprising a resistor and a capacitor (“RC circuit”), and a circuit comprising a 

resistor and an inductor (“RL circuit”), result in a first order differential equation.   
6. A first order circuit is characterized by a first order differential equation. 
7. Both the node equation for a parallel RLC circuit and the mesh equation for a series RLC 

circuit result in a second-order differential equation.   
8. A second order circuit is characterized by a second order differential equation. 
9. There are two ways to excite a circuit. 

 (a) By initial conditions of the storage elements in the circuit: in this source-free circuit, 
we assume that energy is initially stored in the capacitive or inductive elements of the 
circuit and the energy causes current to flow in the circuit and is gradually dissipated in 
the resistors. 

 (b) By independent sources: Only DC sources are considered in the course. 
10. The natural response of a circuit refers to the behavior (voltages and currents.  What else?) of 

the circuit itself, with no external sources of excitation. 
11. The step response of a circuit is its behavior when the excitation is the step function, which 

may be a voltage or a current source.  
12. The two types of first-order circuits and the two ways of exciting them add up to the four 

possible situations: 
 (a) Natural response of RC circuit 
 (b) Natural response of RL circuit 
 (c) Step response of RC circuit 
 (d) Step response of RL circuit 
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B. First Order Transient Situation (Example Circuits) 
 
1.Natural response of RC circuit 

 
 
 
2. Natural response of RL circuit 

 
 
 
3. Step response of RC circuit 

 
 
4. Step response of RL circuit 
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Class Note 24:  General solution of a first-order differential equation 
 
 
A. Example First 
1. Before we solve a first order differential equation, let’s consider an example circuit. 
2. Consider the flash circuit in a camera.  The operation of the flash circuit, from a user 

standpoint, involves depressing the push button on the camera that triggers both the shutter 
and the flash and then waiting a few seconds before repeating the process to take the next 
picture.  

3. This operation can be modeled using the circuit below.  The voltage source Vs and the resistor 
Rs model the battery that power the camera and flash. The capacitor models the energy 
storage, the switch models the push button.  And the resistor R models the xenon flash lamp.  

 

 
 

 
4. The capacitor is charged when push button is in the released position. 
5. When the button is pressed, the capacitor energy is released through the xenon lamp, 

producing the flash.  In practice, this energy release takes about 1 ms and the discharge time 
is a function of the elements in the circuit. 

6. When the button is released, the battery recharges the capacitor.  Again, the time required to 
charge the capacitor is a function of the circuit elements. 

7. Let’s further investigate the charging and discharging of the capacitor: 
(a) Charging the capacitor (push button in released position): In DC circuit, the capacitor is 

an open circuit, therefore, no current flows through the circuit.  Hence, the voltage across 
the capacitor is same as the source voltage. 
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(b) Discharging the capacitor (push button pressed):  when the switch is closed, the node 

voltage equation, from 0=+ RC ii , is: 0)()( =+
R
tv

dt
tdvC cc  ---(A.1) 

 
 

(c) The equation (A.1) is rearranged as:  0)(1)(
=+ tv

RCdt
tdv

c
c  ----(A.2) 

8. If we write the equation (2) using a general variable x(t), instead of the voltage variable, vc(t), 
we could have the following a general first order differential equation, which is the subject of 

the next section. 0)()( =+ tax
dt
tdx  -----(A.3) 

 
B. General solution of a first-order differential equation 
1. Let’s start from a first order differential equation of the form 

Atax
dt
tdx =+ )()(  , (A is some constant)----(B.1) 

*: Note that a and A in (B.1) correspond to 
RC
1  and 0, respectively, in (A.2) 

2. A fundamental theorem of differential equation states that: 
  IF  

)()( txtx p= is any solution of equation  Atax
dt
tdx =+ )()(  ---(B.1) 

  AND IF 

)()( txtx c= is any solution to the homogeneous equation 0)()( =+ tax
dt
tdx ---(B.2) 

  THEN 
  )()()( txtxtx cp += -----(B.3)  is a solution to the original equation (B.1) 
3.The term )(txp is called the particular integral solution (or forced response), and the term 

)(txc is called the complementary solution (or natural response). 
4. Then, the general solution of the equation (B.1) consists of two parts that are obtained by 

solving the two equations: 

Atax
dt
tdx

p
p =+ )(

)(
  ----(B.4) 

0)()( =+ tax
dt
tdx

c
c     ----(B.5) 

 
5. Since the right-hand side of equation (B.4) is a constant, it is reasonable to assume that the 

solution )(txp  must also be a constant.  Therefore, we assume that: 1)( Ktxp =   -----(B.6) 
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6. Substituting this constant in to equation (B.4) yields:
a
AK =1   -----(B.7) 

7. Equation (B.5) can be rearranged to: a
tx
dttdx

c

c −=
)(
/)(   ------(B.8) 

8. The equation (B.8) is equivalent to: atx
dt
d

c −=)]([ln   

9. Therefore, equation (B.9) becomes: cattxc +−=)(ln   
10. Equation (B.10), then, becomes: ]ln[]ln[]ln[)(ln 2

atcatcat
c eKeeetx −−+− ⋅=⋅==  

11. Therefore, at
c eKtx −⋅= 2)(   ----(B.9) 

12. Finally, the solution to equation (B.1) is:  
     ateKKtx −+= 21)(  ----(B.10) 
 
13. The constant K2 (also K1) can be found if the value of the independent variable x(t) is known 

at two one instances of time. 
  Let’s evaluate x(t) at t = t0:  oateKKtx −+= 210 )(   

     Also at t=∞: 121)( KeKKx a =+=∞ ∞−  
  From above two equations, we could get for K2:   0)]()([ 02

atextxKK ∞−=  
14. Then, we can rewrite the solution (B.10) in to: 
  )(

021
0)]()([)()( ttaat extxxeKKtx −−− ∞−+∞=+=    (B.11) 

 
15. If we choose t0=0, then the solution becomes: 
  atat exxxeKKtx −− ∞−+∞=+= )]()0([)()( 21   (B.12) 
 
16. In plain term, we could say this way: 
 
 (Solution)=(Final value) + [(initial value)-(final value)] exp[-at] 
 
 
C. Camera Flash Circuit Case 
1. Let’s go back to the camera flash circuit to apply the general solution for the first order 

differential equation. 

2. The node-voltage equation across the capacitor is given by: 0)(1)( =+ tv
RCdt

tdv
c

c  

3. We see that: a= 1/RC and A=0 ---- K1=A/a=0. 
4. Therefore, the voltage across the capacitor is in the form RCt

ccc evvtv /)]()0([)( −∞−=  
5. From the circuit, the initial voltage sc Vv =)0(  
6. Also, from the circuit, the final voltage at time t=∞, the voltage will die eventually because 

there is no voltage source in the circuit but a consuming resistor.  So 0)( =∞cv  
6. Finally,  τ//]0[)( t

s
RCt

sc eVeVtv −− =−= , where time constant τ=RC 
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Class Note 25:  Time constant  
 

1. Let’s consider a differential equation of: Atx
dt
tdx =+ )(1)(

τ
.  Then the solution form is: 

    τ/)(
0

0)]()([)()( ttextxxtx −−∞−+∞=   
 
2. Assuming that t0=0 yields to: 

τ/)]()0([)()( texxxtx −∞−+∞=  
 

4.  Let’s further simplify our discussion by assuming that x(∞)=0, then: 
τ/)0()( textx −⋅=  

 
3. The rate of the decay is determined by the constant τ, “time constant”.   
 
4. Let’s find the values of the decaying term x(t) at time t=0 and t=τ: 

)0()0()0( /0 xexx =⋅= − τ  
1/ )0()0()( −− ⋅=⋅= exexx τττ  

5.  By comparing the values of the decaying term, we have: 1
1

)0(
)0(

)0(
)( −

−

== e
x
ex

x
x τ  

6. The time constant of a circuit then is defined as the time required for the response to decay by 
a factor of 1/e (or 0.368 or 36.8%) of its initial value. 

 

7.  The value of 
)0(

)0(
)0(
)( /

x
ex

x
tx t τ−

=  for several t values in terms of τ is tabulated for a graph: 

The value of τ/

)0(
)( te

x
tx −=  

time t= τ/te−  
0 e0=1.00000 
τ e-1=0.36788 
2τ e-2=0.13534 
3τ e-3=0.04979 
4τ e-4=0.01832 
5τ e-5=0.00674 

 
8. A graph and observations: It is evident that the value x(t) is less than 1% of the initial value 

after 5τ (i.e., five time constants).  Thus, it is customary to assume that it takes 5τ for the 
circuit to reach its final (or steady) state. 

 
9. Another observation: The smaller the time constant, the more rapidly the value x(t) decreases. 
 



 2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

ττττ
 

 
 
10. The time constant may be viewed from another perspective.  Evaluating the derivative of 

the ratio of x(t) and x(0), we obtain 
 








−=







=







 −
−

τ
τ

τ
/

/ 1
)0(

)0(
)0(
)( t

t

e
x
ex

dt
d

x
tx

dt
d  

 

11. The derivative of the ratio at time t = 0, then, becomes 
ττ

τ 11

0

/ −=






−
=

−

t

te . 

 
12. Thus, the time constant could be defined as “the initial rate of decay,” or “the time taken for 

)0(
)(

x
tx to decay from unity to zero,” assuming a constant rate of decay.   

 
13. In other words, a tangent line, drawn to the decaying curve at t=0, intercepts with the time 

axis at t = τ.  (Refer to the graph above) 
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Class Note 26:  First-Order Circuit Analysis 
 
A. Review 

A.1. A general first-order differential equation: Atx
dt

tdx =+ )(1)(
τ

.   

A.2. Then the solution form is: τ/)(
0

0)]()([)()( ttextxxtx −−∞−+∞=  with Ax ⋅=∞ τ)(  
 
A.3. We analyze four categories of first-order circuits.  They are 
 (a)RL Natural Response 
 (b) RC Natural Response 
 (c) RL Step Response 
 (d) RC Step Response 
 
B. RL Natural Response 
 
B.1. Summary 
 (a) Circuit formation: RL Parallel circuit with initial current in the inductor.   
                                        No source after t>0. 

 (b) Linear first order differential equation: 0=+ Ri
dt
diL --> 0=+ i

L
R

dt
di , Ax ⋅=∞ τ)( =0 

 (c) Solution form: L
Rtt

etietiti
−−

=⋅= )()()( 00
τ , 

R
L=τ  

 (d) Power equation: vip =  

 (e) Energy equation: ∫=
t
pdxw

0
 

 
B.2. Example #1: The switch has been closed for a long time before being opened at t=0. 
Find iL(t), i0(t), and v0(t).  Also find P10Ω and w10Ω for t>0. 

 
 
SOLUTION: 
 (a) for t<0:  Current source is DC, therefore, the inductor is actually shorted-out.  Therefore, 
all the current from the source flows through the inductor.  Therefore, the initial current value of 
the inductor is 20[A].  That is, iL(0)=20.   
 
(b) for t>0:  The total resistance, which is paralleled with the inductor, is 2+10//40=10 Ω 
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 (c) Therefore, this is a RL natural response circuit with L=2H and R=10Ω 

 (d) Applying KCL yields: 0102 =+ L
L i

dt
di  -->  05 =+ L

L i
dt
di  

  (e) Therefore, τ =0.2 and A=0 ---->iL(∞)=0 
 (f) The solution form, then, is: tt

L eeiti 5/ 20)0()( −− == τ  

 (g) For io, we use current-division from iL(t):  t
L etiti 5

0 4
4010

10)()( −−=
+

⋅−=  

 (h) Then, tetitv 5
00 160)(40)( −−==  

 (i) tevP 10
2

0
10 2560

10
−

Ω == [W] 

 (j) [ ] 25602562560
0

010
10 =−== ∫

∞
−

Ω edxew x [J] 

(k) Observation: 

   i. Initial energy stored in the inductor:  400202
2
1)0(

2
1)0( 22 =⋅⋅== Liw [J] 

   b. Where is the difference of (400-256)=144[J]? 
 
    ?2 =Ωw  

      t
L eiP 102

2 8002 −
Ω =⋅=  --->  80800

0

10
10 ∫

∞
−

Ω == dxew x [J] 

 
    Ω40w =? 

      to e
v

P 10
2

40 640
40

−
Ω ==  --->  64640

0

10
40 ∫

∞
−

Ω == dxew x [J] 
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B3. Example #2:  Two inductors, L1 and L2,  with initially charged (I01=8 [A] and I02=4 [A]) are 
connected to a resistive circuit at t=0.  Find (a) i1(t), i2(t), and i3(t) for t>0; (b) initial energy 
stored in L1 and L2; (c) Energy stored in L1 and L2 as t →∞; and (d) Energy delivered to the 
resistive circuit as  t →∞. 
 
 

 
SOLUTION: 
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C. RC Natural Response 
 
C.1. Summary 
 (a) Circuit formation: RC Parallel circuit with initial current in the inductor.   
                                        No source after t>0. 

 (b) First order differential equation: 0=+
R
v

dt
dvC  ---> 0=+

RC
v

dt
dv  with RC=τ  and v(∞)=0 

 (c) Solution form: 
t

RC
t

evevtv
1

)0()0()(
−−

⋅== τ ,   
 (d) Power equation: vip =  

 (e) Energy equation: ∫=
t
pdxw

0
 

 
C.2 Example #1: The switch has been closed for a long time before being opened at t=0. 

Find Vo(t) for t>0. 

 
SOLUTION: 
(a) for t<0:  Capacitors are open-circuits in DC. 

 
 (b) Therefore, the initial voltages across the 5uF and 1uF capacitors are: 

   4
402015

2015)0(5 =
++

⋅=V [V]  and    8
402015

4015)0(1 =
++

⋅=V [V] 

 (c) For t>0:   )()()( 150 tVtVtV +=  
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 (d) @ 1: 055 =+
R
v

dt
dvC  ---> 0

1.0
5555 =+=+ v

dt
dv

RC
v

dt
dv :  τ5 =0.1 and A=0 ----> v5(∞)=0 

  Therefore, t
t

eevtv 10
55 4)0()( 5 −

−
== τ  

 

  (e) @ 2: 011 =+
R
v

dt
dvC  ---> 0

04.0
1111 =+=+ v

dt
dv

RC
v

dt
dv :  τ1 =0.04 and A=0 ----> v1(∞)=0 

  Therefore, t
t

eevtv 25
11 8)0()( 1 −

−
== τ  

 
 (f) Finally, tt eetvtvtv 2510

150 84)()()( −− +=+=  
 
 
C.3. Example #2: The switch has been in position 1 for a long time. At t=0, it is switched to 
position 2.  Find (a) vc(t), vo(t), and io(t); (b) total energy dissipated in 60K resistor. 
 

 
 
 SOLUTION: 
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D. RL Step Response 
 
D.1. Summary 
 (a) Circuit formation: R-L Series.  No source before t=0. 
 (b) DC voltage source (Vs) is suddenly applied at t=0. 

 (c) Linear first order differential equation: sVRi
dt
diL =+  ---> 

L
Vi

L
R

dt
di s=+  

 (d) Then 
R
L=τ  and A=

L
Vs ; 

R
VAi s=⋅=∞ τ)(  

 (e) Solution for current: 
t

L
R

sst e
R
Vi

R
Veiiiti

−− ⋅






 −+=∞−+∞= )0()]()0([)()( /τ  

 (f) Solution for voltage across the inductor:  
dt

tdiLtvL
)()( =  

 
D.2. Example #1: The switch has been in position a for a long time.  At t=0, it moves to position 
b. Find the voltage across the inductor and the current through it for t>0. 

 
SOLUTION: 
(a) for t<0:  Inductor is a short circuit in DC, therefore, there is no current through the resistor.  

All the current flows through the inductor.  Therefore, the initial current is 8)0( −=i [A] 

 
(b) for t>0:  

 
 (c) KVL:  022.024 =++− i

dt
di  ---> 12010 =+ i

dt
di ; τ=0.1 and A=120; 12)( =⋅=∞ Ai τ  

 (d) Solution:   { } tt eeti 1010 201212812)( −− ⋅−=⋅−−+=  
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(e) Voltage across the inductor:  tt
L ee

dt
tdiLtv 1010 40)200()2.0()()( −− =⋅⋅==  

 
(f) Observation:   

i. Initial voltage across the inductor 
  vL(0+)=40 [V] 

ii. The time at which the inductor voltage equals the source voltage, 24 [V] 

  2440)( 10 == − t
L etv � 5108.0

40
24ln10 −==− t , therefore t=0.05108 [s] 

iii. The voltage across the inductor after a long time. 
  vL(∞)=0 [V].    

 
 
D.3. Example #2: The switch has been in position b for a long time.  At t=0, it moves to position 
a.  Find the voltage across the inductor and the current through it for t>0. 
 

 
 

SOLUTION: 
 

(a) for t<0:   
 

(b) for t>0:   
 

 
 (c) KVL equation:  
 
 
 

(d)Observation:   
i. Initial voltage across the inductor 

  vL(0+)=? 
ii. The time at which the inductor voltage equals the source voltage, -80 [V] 

  
 

iii. The voltage across the inductor after a long time. 
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E. RC Step Response 
 
E.1. Summary 
 (a) Circuit formation: R-C Parallel.  No source before t=0. 
 (b) DC current source (Is) is suddenly applied at t=0. 

 (c) Linear first order differential equation: sI
R
v

dt
dvC =+ �

C
I

RC
v

dt
dv s=+  

 (d) τ=RC and 
C
IA s= ; RIAv s=⋅=∞ τ)(  

 (f) Solution for voltage: { } RC
t

scscccc eRIvRIvvvtv
−

⋅−+=∞−+∞= )0()]()0([)()( , RC=τ  

 (g) Solution for current : 
dt

tdvCti c
c

)()( =    

 
E.2. Example #1: The switch has been in position b  for a long time.  At t=0, it moves to position 
a.  Find the voltage across the capacitor and the current through it for t>0. 

 
SOLUTION: 
(a) for t<0:  The capacitor is an open circuit in DC, therefore, the initial voltage across the 

capacitor is same as the voltage across the 60K resistor.  Therefore, the initial capacitor voltage 

is, by voltage division:  30
80
6040)0( =⋅=cv [V]. 

 
(b) for t>0:  The circuit for t>0 (left) can be source transformed to have the usual RC-parallel 

with current source form (right).    Note that Is=-0.0015 [A]. 
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(c) Node Voltage equation:  0=++ sI
R
v

dt
dvC  --->

C
I

RC
v

dt
dv s−=+  

(d) τ=RC=0.01; 60)6000()01.0()( −=−×=⋅=∞ Av τ  

(c) Voltage Solution: tRC
t

cccc eevvvtv 100)]60(30[60)]()0([)()( −−
−−+−=⋅∞−+∞=  

   Therefore,  t
c etv 1009060)( −⋅+−=  

(d) Current:   tt
c ee

dt
dvCti 1001006 00225.0900010)25.0()( −−− −=⋅⋅⋅−==  

 
 
E.3. Example #2: The switch has been in position a for a long time.  At t=0, it moves to position 
b.  Find the voltage across the capacitor and the current through it for t>0. 
 

 
 
 

SOLUTION: 
 

(a) for t<0:   
 
 

(b) for t>0:   
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F. EXTRA PROBLEMS OF RL and RC RESPONSE 
 
F.1. Example #1: The switch has been open for a long time.  At t=0, the switch is closed.    

                 Find v(t) and i(t) for t>0. 

 
SOLUTION: (point: get i(t) ) 

(a) for t<0:  The initial current in the inductor is 5[A]=i(0-) 
(b) for t>0:  After switch close, the current becomes 20[A]= )(∞i  

     Time constant 31080 −×==
R
Lτ  

     Therefore,    Current: t
t

eeti 5.1208.0 1520)205(20)( −−
−=−+=  

          Voltage: tt ee
dt
diLtv 5.125.12 15)5.1215)(08.0()( −− =−⋅−==  

 
F.2. Example #2: The switch has been in position b for a long time.  At t=0, the switch is moved 
to position a.     Find v(t) and i(t) for t>0. 

 
SOLUTION: (point: get v(t) ) 

(a) for t<0:  The initial  voltage across the capacitor is 50[V]=v(0-) 
(b) for t>0:  After switch close, the voltage across the capacitor becomes  

                   )(24
25
2030 ∞=−=⋅− v  

     Time constant 79 1041025 −− =⋅×== RCτ                (Note that: 4
520
520 =

+
⋅=eqR ) 

     Therefore,      Voltage: t
t

eetv
77 1010 7424))24(50(24)( −

−
+−=−−+−= −  

          Current: tt ee
dt
dvCti

77 101079 5.18)10(741025)( −−− −=⋅−⋅⋅×==  
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ELEG202 NETWORK ANALYSIS I             Dr. Charles Kim 
 
Class Note 28:  Second-Order Natural Response 
 
A. Review 

A.1. A general second-order differential equation: Ktxw
dt

tdx
dt

txd
o =++ )()(2)( 2

2

2

α    

A.2. Then the solution form: (where 2)(
ow

Kx =∞  ) 

For overdampled case: tsts eAeAxtx 21
21)()( ++∞=  

For underdamped case: teBteBxtx d
t

d
t ωω αα sincos)()( 21

−− ++∞=  

For critically damped case: tt eDteDxtx αα −− ++∞= 21)()(  
 
A.3. We analyze four categories of first-order circuits.  They are 
 (a)Paralle RLC Natural Response 
 (b)Series RLC Natural Response 
 
B. Parallel RLC Natural Response 
 
B.1. Example #1: Consider the parallel RLC circuit shown below.   Let’s assume that the initial 
conditions on the storage elements are:   iL(0)= -1[A] and vc(0)=4 [V].   Find the node voltage 
v(t) and the current through  the inductor. 

 
SOLUTION: 

 (a) Node Voltage Equation:    

02.0
5
1

2
01 =++→=++  dt

dvvdxv
dt
dvCvdx

LR
v

 

(b) Derivation with respect to time t : 

05.20
52

12.0 2

2

2

2

=++→=++ v
dt
dv

dt
vdv

dt
dv

dt
vd

  (with α=1.25 and w02=1) 

 (c) Characteristic equation: 
    015.202 222 =++→=++ sswss oα  

(d) Roots calculation: (s+2)(s+0.5)=0  ----> s1=-2 and s2= -0.5  

  [* or  by 22
1 ows −+−= αα   and    22

2 ows −−−= αα ] 
 (d) Damping condition check:  α2 > w02  (this is a overdamped case) 
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 (e)  Solution form: tstststs eAeAeAeAvtv 2121
2121)()( +=++∞=  

 (f) Constraints calculation:  
4)0()0( 21 ==+= cvAAv    --------------------------------------------------(1) 

→+== 22110
)( AsAs

dt
tdv

t to apply this we have a problem: the initial condition we 

have (other than the capacitor voltage) is not 0
)(

=tdt
tdv

, but iL(0).  

(g) Therefore, we slight change the original equation so that it includes the initial inductance 
current.   So, let’s change the original equation: 

0)(01 =++→=++  dt
dvCti

R
v

dt
dvCvdx

LR
v

L  

(h) Then,  )]([1)(10)( ti
C

tv
RCdt

dv
dt
dvCti

R
v

LL −−=→=++  

(i) Now, we can calculate the constraints:  

  =−−== 210 5.02)( AA
dt

tdv
t 5)1(5)4(5.2)]0([1)0(1 −=−−−=−− LiC

v
RC

---(2) 

 (j) From   421 =+ AA   and  55.02 21 =+ AA , ----->A1=2 and A2=2 

 (k) Finally, from tttsts eeeAeAvtv 5.02
21 22)()( 21 −− +=++∞=  

 (l) For the inductor current: the inductor current is related to v(t) by = dttv
L

tiL )(1)( . 

 (m) Substitution of the voltage equation yields: 

  tttt
L eedteedttv

L
ti 5.025.02 8.02.0]22[

5
1)(1)( −−−− −−=+==   

 (n) Sketch of the voltage and the inductor current 

Example #1 (P-RLC)

-5.00

0.00

5.00

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

V 
&

 A Vc(t)
Il(t)
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B.2. Example #2: Find i(t) directly (without getting v(t) first)  
       when  iL(0)= 0.3[A] and vc(0)=1.2 [V] 

 
 

 SOLUTION: 
 

 (a) differential equation:  0)( =++
dt
dvCti

R
v

L  

 (b) Since 
dt
diLv L= , then equation becomes: 

 01
2

0
2

22

=++→=++
LC
i

dt
di

RCdt
id

dt
idLCi

dt
di

R
L LLLL

L
L  

 (c)  

 From initial voltage,  2.1)0( =
dt

diL L  . Therefore, 24.0
5
2.1)0( ==

dt
di L  with  3.0)0( =Li  

 (b) Neper and Resonant Frequencies 

   25.1
2

1 ==
RC

α   and 112
0 ==

LC
ω  

 (c) Damping Types. 
   Since 2

0
2 ωα > , it is overdamped case 

 (d)  Solution form: tt eAeAiti 5.0
2

2
1)()( −− ++∞=  

 (f) Constraints calculation:  
3.0)0( 21 =+= AAi    --------------------------------------------------(1) 

24.05.02)(
210 =−−== AA

dt
tdi

t  

  Therefore, A1=-0.26 and A2=0.56 
 (g) Final answer: tt eeti 5.02 56.026.0)( −− +−=  
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C. Series RLC Natural Response 
 
C.1. Example #1: Consider the series RLC circuit shown below with the following parameter:  

    iL(0)= 4 [A] and vc(0)= - 4 [V].  Find the current and the capacitor voltage. 

 
 

 SOLUTION: 
 (a) KVL around the loop:    

0)( =++ tv
dt
diLRi c     or   0)(1 =++  dtti

Cdt
diLRi  

(b) Derivation with respect to time t : 

02560 2

2

2

2

=++→=++ i
dt
di

dt
id

LC
i

dt
dv

L
R

dt
id

  (with α=3 and w02=25) 

 (c) Characteristic equation: 
    025602 222 =++→=++ sswss oα  

(d) Roots calculation: By 22
1 ows −+−= αα   and    22

2 ows −−−= αα  
  s1=-3+j4  and s2=-3-j4 

 (d) Damping condition check:  α2 < w02  (this is a underdamped case) 
 (e)  Solution form:  

teBteBiti d
t

d
t ωω αα sincos)()( 21

−− ++∞= , where 4925 =−=dw  

So, teBteBti tt 4sin4cos)( 3
2

3
1

−− +=  
 (f) Constraints calculation:  

4)()0( 11 ==+∞= BBxi  

221210 41243)( BBBBB
dt

tdi
dt +−=+−=+−== ωα  

(g) From the original equation:  0)( =++ tv
dt
diLRi c  

 

(h)   
L
tvi

L
R

dt
ditv

dt
diLRi c

c
)(0)( −−=→=++  

(i) Now, we can calculate the constraints:  

  =+−== 20 412)( B
dt

tdi
t 204

1
24

1
)0()0(

1
6 −=+−=−− vi  

 (j) Therefore, B2=-2. 
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 (k) Finally, teteti tt 4sin24cos4)( 33 −− −=  

 (l) For the voltage across the capacitor:  From 0)( =++ tv
dt
diLRi c , 

dt
ditete

dt
diLRitv tt

c −−−=−−= −− )4sin24cos4(6)( 33  

(m) Simplification yields:  
    tetetv tt

c 4sin224cos4)( 33 −− +−=  
 (n) Sketch of the voltage and the inductor current 
 

Example #1 (S-RLC)

-5.00

0.00

5.00

10.00

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

V 
&

 A Vc(t)
I(t)
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C.2 Example #2:  The switch in the circuit has been in position 1 for a long time.  At t=0, the 
switch moves from position 1 to 2.  Find v(t). 
 

 
  
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
C.3. Example #3:  The switch in the circuit has been closed for a long time.  At t=0, the switch 
opens.  Find i(t). 

 
 

SOLUTION: 
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ELEG202 NETWORK ANALYSIS I             Dr. Charles Kim 
 
Class Note 29: Step Responses of Parallel and Series RLC circuits 
 
A. Review 

 A.1. A general second-order differential equation: Ktxw
dt

tdx
dt

txd
o =++ )()(2)( 2

2

2

α    

A.2. Then the solution form: (where 2)(
ow

Kx =∞  ) 

For overdampled case: tsts eAeAxtx 21
21)()( ++∞=  

For underdamped case: teBteBxtx d
t

d
t ωω αα sincos)()( 21

−− ++∞=  

For critically damped case: tt eDteDxtx αα −− ++∞= 21)()(  
 
A.3. We analyze four categories of first-order circuits.  They are 
  (a)Paralle RLC Natural Response 
  (b)Series RLC Natural Response 
 
 
B. Step Response of Parallel RLC  
 
B.1 Example #1:  Find iL(t). 
 

  
 (a) t<0:  
  i. There is no initial current in the inductor, therefore iL(0)=0. 
  ii. The initial voltage across the capacitor is zero, therefore,  v(0)=0. 
 

REGULAR APPROACH [Get v(t) first using node voltage equation, then get i(t)] 
 

 (b) Node voltage equation: 

0124.0 =+++−  dt
dvCvdx

LR
v  

  Differentiation with respect to t: 011
2

2

=++ v
LCdt

dv
RCdt

vd  

 (b) Neper and Resonant Frequencies 



 2

   5
)025.0(42

1
2

1 =
⋅⋅

==
RC

α  and 16
)025.0)(5.2(

112
0 ===

LC
ω  

 (c) Final value:  0)( 2 ==∞
ow

Kv  

 
 (d) The roots of the characteristic equation:   
   2352

0
2

1 −=+−=−+−= ωααs   and  8352
0

2
2 −=−−=−−−= ωααs  

 (e) Damping Types. 
   Since 2

0
2 ωα > , it is over damping response 

 (f) Solution form: tsts eAeAvtv 21
21)()( ++∞=  

 (g) Since 0)( 2 ==∞
ow

Kv , tt eAeAtv 8
2

2
1)( −− +=  

 (h) Let’s apply the two constraints for A1 and A2. 
   From 21)()0( AAvv ++∞= .  0)0( 21 =+= AAv ----(1) 

  For  22110

)( AsAs
dt

tdv
t +== constraint, we slightly change our original equation: 

  024.00124.0 =+++−→=+++−  dt
dvCi

R
v

dt
dvCvdx

LR
v

L  

 Then, 
CC

i
RC
v

dt
dv L 24.0+−−= .   

 Therefore, 6.9
025.0
24.024.024.0)0()0(

0 ===+−−== CCC
i

RC
v

dt
dv L

t  

So the relationship goes like this:  

 6.982)(
2122110 =−−=+== AAAsAs

dt
tdv

t  ------(2) 

 
From (1) and (2): we have:   A1=1.6 and A2=-1.6 

 (i) Therefore, voltage:  tt eetv 82 6.16.1)( −− −=  [V] 

 (j) Finally, the current:  From 024.0 =+++−
dt
dvCi

R
v

L  

  
tt

tttt
L

ee

eeee
dt
dvC

R
vi

82

8282

08.048.024.0

)8.122.3)(025.0()6.16.1)(25.0(24.024.0
−−

−−−−

+−=

+−−−−=−−=  

 
Alternatively, you can do this way: 

 −−−− +−=−==
t

tt
t

eedeedv
L

ti
0

8282

0

08.048.024.0][4.0)(1)( τττ ττ  

 
  
 
*NOTE: See an alternative approach next page. 
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ALTERNATIVE APPROACH (DIRECT METHOD) 
 

 (b) t>0: Since our target is iL(t), let’s express every term in terms of the current. 

  KCL Equation:   0)()()(24.0 =+++−
R
tvti

dt
tdvC L  

  Since  
dt
diLtv L=)( , 2

2

dt
idLC

dt
dvC L=  

  Therefore ,the KCL equation becomes:  

84.324.01124.0 2

2

2

2

==++→=++
LC

i
LCdt

di
RCdt

idi
dt
di

R
L

dt
idLC L

LL
L

LL  

 
 (b) Neper and Resonant Frequencies 

   5
2

1 ==
RC

α  and 1612
0 ==

LC
ω  

 (c) Final value:  24.0)( 2 ==∞
ow

Ki  

 
 (d) The roots of the characteristic equation:   
   2352

0
2

1 −=+−=−+−= ωααs    and 8352
0

2
2 −=−−=−−−= ωααs  

 
 (e) Damping Types. 
   Since 2

0
2 ωα > , it is over damping response 

 (f) Solution form: tsts eAeAvtv 21
21)()( ++∞=  

 (g) Since 24.0)( 2 ==∞
ow

Kv , tt eAeAtv 8
2

2
124.0)( −− ++=  

 (h) Let’s apply the two constraints for A1 and A2. 
   From 21)()0( AAii ++∞= .  024.0)0( 21 =++= AAi ----(1) 

  From  21221100 820)()( AAAsAs
L
tv

dt
tdi

tt −−=+=== == .------(2)  

 
From (1) and (2): we have:   A1=-0.48and A2=0.08 

 (i) Finally:  tt eeti 82 08.048.024.0)( −− +−=  [A] 
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B.2. Example #2: Energy is stored in the circuit before the DC current source is applied, with 
29.0)0( =Li [A] and 5)0( =Cv [V].  Find  iL(t). 

 
 
 SOLUTION (Use Direct approach) 

84.324.01124.0 2

2

2

2

==++→=++
LC

i
LCdt

di
RCdt

idi
dt
di

R
L

dt
idLC L

LL
L

LL  

 

 From initial voltage,  5)0(
=

dt
diL L  . Therefore, 2

5.2
5)0(

==
dt

diL  with  29.0)0( =Li  

 (b) Neper and Resonant Frequencies 

   4
2

1 ==
RC

α   and 1612
0 ==

LC
ω  

 (c) Damping Types. 
   Since 2

0
2 ωα = , it is critically damping response 

 
 (d) Solution form 
   From )()()( txxtz +∞=  and , tt eDteDtx αα −− += 21)(  

   tt
LL eDteDiti 4

2
4

1)()( −− ++∞=  

   Therefore, tt
L eDteDti 4

2
4

124.0)( −− ++=  
 (e) Let’s apply the two constraints for A1 and A2. 
   From 2)()0( Dxx +∞= , 29.024.0)0( 2 =+= DiL   

   From  21

)0( DD
dt

dx α−== ,  24)0(
21 =+−= DD

dt
diL  

   From these two constraints, we have: 
   D1= 0.05 and D2=0.51 

(f) Final answer:  tt
L eteti 44 51.005.024.0)( −− ++= [A] 
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C. Step Response of Series RLC 
 
C.1. Example #1:    Find vC(t). 

 
 (a) Differential equation: 

  0)()(48 =+++− tv
dt
diLtRi c  

     (b) Since the question is to find the voltage, let’s use the direct method.   
      Instead of getting current and then voltage. 

       The current through the capacitor is: 
dt
dv

Ci c=  

  Therefore, the differential equation becomes:  1208.41
2

2

==++
LC

v
LCdt

dv
L
R

dt
vd

c
cc  

 (c) Neper and Resonant Frequencies 

  4.1
)1.0(2

28.0
2

=
⋅

==
L

Rα   ----> 96.12 =α     and  25
)4.0()1.0(

112
0 =

⋅
==

LC
ω  

  And  8.4)( =∞v  
 
 (d) The roots of the characteristic equation:   
   8.44.12

0
2

1 js +−=−+−= ωαα   and 8.44.12
0

2
2 js −−=−−−= ωαα  

 
 (e) Damping Types. 
   Since 2

0
2 ωα < , it is under damping response 

   constraint 3: 8.422 =−= αω od w  
 
 (f) Solution form 
   From )()()( txxtx c+∞=  ----> teBteBtv tt 8.4sin8.4cos8.4)( 4.1

2
4.1

1
−− ++=  

   
 (g) Let’s apply the two constraints for B1 and B2. 
   From 1)()0( Bvv +∞= , B1=-4.8 

   For 211

)0( BB
dt

dv
dωα +−= ,  

from , 
dt
dv

Ci c=  --> 0)0(
0 === C

i
dt
dv

t .   Therefore, 08.44.1 21 =+− BB  

   From these two constraints, we have:  B1= -4.8 and B2= -1.4 
 (h) Then, current:  tetetv tt

c 8.4sin4.18.4cos8.48.4)( 4.14.1 −− −−= [V] 
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ELEG202 NETWORK ANALYSIS I             Dr. Charles Kim 
 
Class Note 30: RLC Response Extra Problems 
 
1. The switch in the circuit has been in position 1 for a long time.  At t=0, it moves from position 

1 to position 2.  Compute i(t) for t>0 and use this current to determine the voltage v(t). 

 
 
 
 
 
 
 
 
 
 
2. The switch in the circuit has been in position 1 for a long time.  At t=0, it moves from position 

1 to position 2.  Compute v(t) for t>0. 
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