S-doman Analysis

1. Laplace Transformation —summary

1. Integral Transformation:
L aplace transformation belongs to a class of analysis methods called integral
transformation which are studied in the field of operational calculus. These methods
include the Fourier transform, the Méllin transform, etc. In each method, the ideais to
transform a difficult problem into an easy problem. For example, taking the Laplace
transform of both sides of alinear, ordinary differential equation resultsin an algebraic
problem. Solving algebraic equationsis usually easier than solving differential equations.
The one-sided L aplace transform defined in 3 below, isvalid over theinterval [0, ). This
means that the domain of integration includes its left end point. Thisiswhy most authors
use the term (0-) to represent the bottom limit of the Laplace integral.

2. Comparison of a few Transform methods:
A. FOURIER TRANSFORM: X(f)= r’ x(t)e 7" dt

(1) Usually for energy signals, in the limit for singularity functions, periodic signals, causal
or non-causal signals.

(2) Steady state circuit analysis, algebraic differential solutions.

(3) It can be used to perform convolution very fast for discrete signals.

(4) Fourier transform is a function of one variable, w, and plots of it have alot of meaning.

B. LAPLACE TRANSFORM: X(s)= [ x(t)e *dt

(1) Usually for signals starting at time zero, exists for many non-energy, non-power signals
for which the Fourier transform does not exists.

(2) Transient and steady state analysis; initial conditionsin differential equations handled
algebraic differential equations.

(3) Analysistooal, but not useful for fast convolution.

(4) Laplace transform is function of one complex variable, g, much harder to plot and the
plots have much less usefulness.

C. Z-TRANSFORMATION : Y(2) = i y(K)z™*

k=0

(1) The method of z-transformation does for discrete systems what Laplace
transformation does for continuous systems.

3. Definition: _g-z‘—_
L(F O} =] f()e™dt=F(s) ,,4; 0> o TO
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5. Propertiesof L aplace Transformations:

a. Linearity: L{kf (1)} = kF(s)
b. Scaling: L{f (at)} = = F(Ej
a \a
c. Time Shift: {f(t—-a)ut-a)}=e*F(s)

—as

*also, L{u(t —a)} :eT

d. Frequency Shift: L{e™ f(t)} =F(s+a)
e. Time Differentiation: L{f'(t)} =sF(s)— f(07)

n

Ccljt: =s"F(s)-s"*f(07)-s"?f'(07)—...— F™(0)

*general form:

F(s)

f. Time Integration: L{ j; f(x)dx} =2
S

i
i = % F/)b}j—g:guﬁ/d—

g. Frequency Differentiation; L{t- f (t)} = -F’(s)

h. Frequency Integration:

= > — C(S>
i. Time Periodicity: L{f(t) = f(t+nT)} = fgs
i. Initial Value (07) = limsF (9
K. Final Value: f (=) = limsF (9
I. Convolution: L{f (t)* g(0)} = F(S)G(S)

i;i/vo_f g 3C/71>e J//— f{f}éyj QQ/;@(—S@ >o&
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2. InverseLaplace Transformation

1. From the definition of Laplace transform, L{ f (t)} = F(s) = J: f (t)e ¥ dt, theinverse Laplace
transform is given by
LY F ()} = f(t)—— j "F(s)e’ds

where the integration is performed along a straight line (c1+jw, for -co <w<e ) in the
region of convergence, 61<c.. Thisinvolves some knowledge about complex analysis
beyond the scope of this course. For this reason, we use the properties of the Laplace
transformation (see note 14) for inverse transformation. _1n other words, wetry to match
function F(s) toanentry of L T.

2. Finding the inverse Laplace transform of F(s) involves two steps.
(a) Decompose F(s) into simple terms using partial fraction expansion
(b) Find the inverse of each term by matching the entries.
*NOTE: Software packages such as Matlab, Mathcad, and Maple are capable of finding _ 2./
partial fraction expansions quite easily. 5

3.2
3. Simple Example >
3 5 6 —  SZo=
Find the inverse Laplace transform of F(s)=——-——+— o
s s+1 s +4 ‘(/ /S
Solution: f(t) = L{F(s)} = L—1{3} Lfl{ 1 L
\

4. Simple Root Example
2
Find f(t) given that F(s)=—> "2
S(s+2)(s+3)
Solution:
2
Step 1: Partial fraction expansion: F(s) = _ stz é+i+i
s(s+2)(s+3) s s+2 s+3

Step 2: There are two approaches available.

s* +12
5/970 @ A=) lso= (s+2)(s+3)|

s?+12
B= 2F = =
(s+2)F(9) |y = S+ 3)I
s +12
C= JF _ .=
(s+3F(9) s S5+2) — |

V Alqebralc Method: Multiplying both sidesby s(s+ 2)(s+ 3) gives

s* +12= A(s+2)(s+3) + Bs(s+3) + Cs(s+2) = (A+ B+ C)s’ + (5A+ 3B + 2C)s+ 6A

Therefore, A+B+C=1, 5A+3B+2C=0, and 6A=12.
Finaly, A=2, B=-8, and C=7
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Step 3: From F(s):g—iJr ! , f(t)=2u(t)-8e +7e™ ,t \%/25‘
s s+2 s+3’ /
5. Repeated Root Example
2
Calculate v(t) given that V(s) = 105" +4 . (L/Z\x
s(s+1)(s+2)
Solution: @
10> ay
) S°+4 A B C
Step 1: V(s) = > =—+ + >+
s(s+1(s+2) S s+l (s+2)° s+2
Step 2:
2
S ResdueMethod: A= sV(s)|_ =2 *4 |
(s+D(s+2)
10s® + 4
B=(S+)V(9) e y=—— |, =—14
( ) ()ls_—l S(S+2)2 |s——1
2
C=(s+2V(9) = =22
s(s+1)
_d 10 4
OTE HERE--—--> D_—[(s+2)2V(s)]| 4d,10s*+4 = N L,=13  multiply (s+2)"2,
Tds S+s derivative, then
U Alqebralc Method? Multiplying both sides by s(s+1)(s+ 2)®gives assess @s=-2
\/ g

10s® + 4= (A+B+D)s® + (5A+4B+C+3D)s’ + (8A+4B+C+2D)s+4A
Solving 474A, 0=8A+4B+C+2D, 10=5A+4B+C+3D, and 0=A+B+D gives
|, C=22, and D=13,

2
Step 3: From V (s) = 10s"+4 5 :l— 14 + 22 >+ 13 :
s(s+1)(s+2)° s s+1 (s+2)° s+2

f(t) =u(t)-14e™ +13e + 22te ™, t>0

(s+4)"2 + 9 --> (s+4)*2 - (j3)"2 =0

6. Complex Root Example a’2 - b"2 = (a+b)(a-b)

Calculatei(t) given that 1(s) = 220 . s1=-4+|3
(s+3)(s” +8s+25) s2=-4-|3
Observation: 1(s) has a pair of complex rootsat s* +8s+25=0 or s=—-4+ j3
Solution:
Stepl: 1(s)= 220 = A + ZBS+C
(s+3)(s"+8s+25) s+3 s°+8s+25
Step 2:
~Residue + Algebraic Methoo('\& (s+3)1(9) s 5= ZL ls-—s=
5\@\,\% s? +8s+25
Then, let’ s substitute two specific value of sfor two simultaneous
equations.
s=0: 1(0) = 20 __ Z < , therefore C=- 10
(3)(25 3 25’
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Q 2 B0 ereforeB=-2
(4)(1+8+25) 1+3 1+8+25

Alqebralc Method: Multiplying both sides by (s+3)(s’ +8s+ 25) gives

—/ 20=(A+B)s® + (8A+3B+C)s+25A+3C
Finaly, A=2, B=-2, and C=-10
20 2 -2s-10

Step 3: From | (s + , we change the equation
P (5)= (s+3)(s? +8$+25) s+3 s°+8s+25 &

so that ‘ Drop ansformation. K
I(s)= 2 N -2s-10 —2(s+4l ) 2 -2(s+4) 3 :
S+3 S°+8s+25 s+3 (s+4)*+9 s+3 (s+4)°+9 3(s+4) +3
Therefore, i(t) = 2e™ — 2™ cos3t=++(2/3)e™* sin3t. Applying the trigonometry

formulae of Acosx+ Bsinx=+A”+ B? cos[x—tan‘l(%j] gives,  Just leave it here is OK

i(t) = 26 — 2,108 cos(3t —18.43)
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<5€¢@7w/ﬂ/y>

7. Transformation Formula for Complex Root Case
From above, we derived i(f) =2e™ —2.108¢™" cos(3t —18.43)
2 —2s—-10

from /(s) = +—
s+3 57 +8s+25
In other words, L™ (228;10} =2.108¢™" cos(3t —18.43)
s°+8s+25

Let’s try to form a useful formula from this observation.
(a) Let’s expand the s-domain function.

25+10 25410 _ 2s+10 _ 2s+10
s2+8s+25 (s+4)\2[i(s+4)2+32 (s+4)* = (j3)?

—_\_/_j(s+4 ]3) (s+4+j3) «— a+tb SR

(b) By algebraic approach we could get the relationships of:
25s+10=(A+ jB)(s+4+ j3)+(A— jB)(s+4—j3)=2A4s +K—6B

--> A=1,B=-1/3 K= /Kjﬁ-)e
(c) The equation in (a) could be rewritten as: -
25410 _ A+jB  A-jB _ K K 1

5 , where K =1-j—
s°+8s+25 (S+4 j3) (s+4+]3) (s+o— ],B) (s+0(+],3) 3

and ¢ =4, =3
(d) The inverse transformation of (¢) is:
Ke (@it o " o~ (a+ib) = K| e/ iPr K| 6—19 —(a+jp)t N 6
where K =|K | £60 and K =K |/ -0 / _\, )(/6
(e) Then, equation (d) becomes:
|K | e P | K |ePe™ P L K | e /P 4 e/ POV =2 | K | e cos(fB +6)
(f) If you substitute K, o, and B with their values,
we finally get the time function as:

2| K | e cos(fBt+8)=2(|1> + (%)Ze‘" cos(3 —18.43) = 2.108¢ ™ cos(3t —18.43)

(g) BOTTOM LINE: THE DISTINCT COMPLEX FORMULA

F(s) K=K|£6 f(t)

(s+a—jB) (s+a+jB) 2| K |e™ cos(ft +6)
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3. ssDomain Analysis: Example Problems > b

7 = —

A. s-domain circuit {/C A+
Related operation transformations for inductor/capacitor: — E s> —V/ )
F(s) I7s>=C s Vee> - Vo)

L{ ()} =sF(9- F(07) and L{] f(x)dq -~

(ex) From v = L% , V(s) = L{sl (s) —i(0-)} =/sLI (s) — Li(0-)

*note: Source transform

=c < \/é A RRAVIL),

Time Domain S—Domain

R
—AN * —AN—
Resistor:
L
T
Inductor:
—— - O
Capacitor:

B. EXAMPLE PROBLEMS:

1. The switch in the circuit closed at t=0. Find current i(t) at t>0 using s-domain analysis

at t=0) w6 ogg  L2F
4 ST [
1 - |
v C’) 32\/ ow + =9
/\
?
SOLUTION — D
-0 \,

t<0: Nednitial charge /O'Q‘/
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s-domain circuit;

12 " sC
8 b -

Equationfor I(s): 1(s) = _ %ls with R=0.96, L=0.8, and C=1.25, then

R+sL+—

32/s _ 40 /&Zma/ﬁe
0964+08s L S +12bs+l J

1.25s -
S Zv’— )75 =

I(s) =

Now let’s change to an entry form:

40 40 50-(0.8)
1(s)=— = 2 2 2 2
s°+12s+1 (s+0.6)°+0.8 (s+0.6)°+0.8

(/04% i(t)! i(t) = 50e°% sin0.8t, t>0
ALL L AE

So o, =50 —

(67+0,6)"— (T0& S+0,6 —fo.8 SH2EH2

_ ot
= 5o 2llde cscphtre) —
= 5D-2:(0.5) & o5 lD.SH—) =

—_ ‘Op #_
=50 &S l0.56D
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2. The switch in the circuit has been opened for along time. Att =0 the switch closes. Find
voltage v(t) by using s-domain analysis.

switch clozed (@ t=0

250 KL 7 .
+
T3 —_ g / —= 0z uF

CD 0.05 uF 1M \ /

(a) t<O: Initial voltage across the capacitor C1is, then, 75 [V]. V,=75.

Rl Rl
R ATAT | —W‘u’j 4 +
1 11
BV Cl = sC1 g R2 sCa [

O T 20

(b) t>0: s-domain circuit: (See above right)
Equation for V(s): node-voltage equation solvesfor V(s).
V(s)—75/s N V(s) -V, /s+V(s) N V(s) _

R 1/sC, R, 1/sC,
Arranging for V(s):
B ey, =Y L sev(n+ Y9 L)
R

2

With, R1=250K, R2=1M, C1=0.05uF, and C2=0.2uF, equation above becomes,

X 20 (3%0 +3. 75}106 = 104"3’(@— +1+ )\/(s)

Finally, [60500 75) (80+s+20+4sN(s)

6000 .
_755+6000 _155+1200 A B

Then, V(s) = = =
55+1OO 53(s+20) s(s+20) s s+20

By residue method: A=60 and B= - 45

Therefore, V(s) = 0__4
S s+20

v(t): v(t) = 60u(t) — 45>, t>0
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3. The switch in the circuit shown below has been closed for along time. At t=0, the switchis
opened. Find v(t) by inverse Laplace transformation of v(s).

switch t=0
[
k
25uF
64V ~ —
+ Yo +
@ "
(a) t<0 = 8 ) \/ > —© (b) t>0: s-domain circuit
|
alt

ffﬂj B S? sLl
64V 64 _D {/7
400 vH AN

Equation for V(s): node voltage method:

[\
V(s LI, V(S) 67

6% \(LI

=0 :>V(s)[—+
* R+ysC - *y R*%C
Therefore,
2 2 g2 2 _
V(s) = sL- 64(2:+L|0Cs _L|0=64LCS+LIOCS 2L|OCS LRCI ;s— LI,
LCs® + RCS+1 LCs® + RCS+1
which simplifiesto
3
/1 I
alcs- Lrel s L, “C f%\ 3
V(s) = 5 = R 1 (because 1,R=64)
LCs"+ RCS+1 2 Rey 1
L LC
I
with =8 a0, o= _3210°, and = -10°
L 400x10 C 25x10 LC
— 4 _ 4
V(s) = 32x10 _ —32x10

s? +2x10*s+10° (s+104)2

v(t):v(t) = -32x10* -t e >0
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4. The switch below has been closed for along time. At t = 0 the switch opens. Find i(t) by
inverse Laplace transformation of 1(s).

=0
4EQ 16K:2
ifz)
T )14
8mH SmH
(a) t<0 (b) t>0
& | |
I, S4e S16KD 4K oK
(T 14 l Inal 0.008s 1) 0.002s
smH 2mH U.UUB(IM) u_mg([uz]
KVL: L1*s*I(s) - L1*I01 + L2*I102 + L2*s*I(s)
16 4 .
=1 —08and I, =1 =02 +1(s)*20000=0
*" " 4116 27" 4416
(0.008)(0.8) - (0.002)(0.2)  0.006 0.6

Equation for I1(s): 1(s) = = =
(0.008+0.002)s+ 20000  0.01s+ 20000 s+ 2000000

. . L1*101 - L2*101
i(t): i(t)=0.6e2°", t>0

(L1+L2)*s + 20000
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5. The switch in the circuit seen in the figure below has been in position 1 for along time. Att =
0 it moves instantaneously from 1 to 2 position. Find v(t) by inverse transformation of
s-domain voltage V(s)

5 1258

50V 137.5V

SOLUTION
() t<0

Finding initial voltage and current: DC-equivalent circuit

4005 <000
VO-50 VO  V-137.5
------- R R ———— (| " * H-Ia
400 1200 500 S0V C) g " sy C)
12000 -
Therefore@ 75/1, = Ve ;;(:;’7'5 = £ ;38’7'5 =_-0.125

(b) t>0 and s-domain circuit:
12562

Vis)
= _ E=1375

Equation for V(9):
Applying a node-voltage equation at the upper left corner:

v(g+L - K

; s _
VE - —xg O
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Then;

K K

s L ]V(S):CVO+‘L'°+S _VeRE) L+ oV Re SOV, L-sl, +K
R+sL R+sL (R+sL) s(R+sL)

Therefore,
SCV_R+s’CV,L-sLl ,+K sCV,R+s’CV,L-sLl +K

V() = S(R+sL) _ s(R+sL) _ SCV,R+5°CV,L—sLl, +K

<4+ 1 1+ sCR+s’LC S(1+ sCR+ s’LC)
R+sL R+sL

By arranging the denominator of the above function, we have:

K
LC _ 755° +(75%x10" + 6.25x10*)s+ 6875x10°

s(s® +10*s+50x10°)

sV, + (BVO —I—°)s+
V() = L _ ¢

s(s® + Rss i)
L LC

Partial Expansion:

75s° +812500s+ 6875x10° A Bs+C (s+5000)"2 +(5000)"2
V(s) = 2 4 6 =<1t 4 6
s(s”* +10*s+50x10°) s s°+10%s+50x10 \/‘
63 0° (s+5000)"2-(j5000)"2=0
By residue method: A= =137.5 I
complex root a2 - b"2=(a+b)(a-b
By dosbrac metho: @)ED)

First we get thisﬁgly multiplication:
75s? +812500s + 6875x10° = A(s® +10*s+50x10°) + Bs?/4 Cs 74—!— @ =75

Then, from A+B=75, we get B=-62.5 “ - 250
Also, from C+1375000=812500, C=-562500 J)O A C= &)
Z - ;
Finally, s OC A= GSF5 01 O
1375  62.55+562500 =
V) = T 10751 50x10° A=IZHD L2.,5
6 — — 0

1375 625(s+5000)+ 250000 1375  625(s+5000)  50(5000)

s (s+5000) + 25x10° s (s+5000)* +5000° (s+5000)? + 50007

v(t)
v(t) = 137.5u(t) — 62.5e™ cos5000t — 506 sin 5000t OK.

= 137.5u(t) — v/62.57 + 50% e cos(5000t — arctan _65205)

=137.5u(t) — 80e™** cos(5000t — 38°)

for t>0
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USij Comp]m va“"“]‘k<§€m|j(ﬂaj>

£ £6255+ b2 500 +625S+56 250
s 21015 +50xi0F : ( S+5000) - (75000 )2 \Zy<
) -
g AtjB A6 j A8
| %, = o i ey 3 = M
IS S-[-gaoo- 5009 $+5000 ‘790"" (5«1&*5‘5) Cf"‘H)P)

d

it i)k (AT, J*B)( $+ 5000 'j 54”") 3 +f':2i.50v |
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4. Application of Laplace Transformation to Integrodifferential
Equations

The Laplace transform is useful in solving linear integrodifferential equations by following:

1. Using the differential and integration properties, each term in the integrodifferetial equation is
transformed. Initial conditions must be taken into account, though.

2. We solve the resulting algebraic equation in the s domain.

3. We then convert the solution back to the time domain by using the inverse Laplace
transformation

Example 1.
Solve the differential equation using the Laplace transformation.

d;:gﬂ +6 d‘c’lf) +8v(t) = 2u(t), subject to v(0) = 1v'(0) = —2.
Solution:

By taking Laplace transform of each term,

[V (s) — sv(0) ~ V'(0)] + 6[sV (5) — V(0)] + 8V (s) = z
substituting v(0) =1,v’(0) = -2, >

SAV(8) - 5+ 2+ 65V (5) — 6+8V(9) =§

or, (sz+63+8)V(s):s+4+E
S

S® +4s+2 s°+4s+2 A B C
Hence, V(s)=— = S, 2 L~

S(s“+6s+8) sS(s+2)(s+4) s s+2 s+4
By residue or algebraic method, we have: A=0.25, B=0.5, and C=0.25

Therefore, v(t) = 0.29u(t) + 26 +e™], t>0

Example 2:
Solve for y(t) in the following integrodifferntial equation.
t
% +5y(t) + 6J- y(x)dx =u(t), y(0)=2.
0

Solution:

Taking Laplace transformation of each term,
[SY(s)—y(0)] +5Y(s) + GE = 1
s s
Substituting y(0)=2 and multiplying through by s,

Y(s)[S® +55+6] =1+ 2s,

1+2s _ -3 N 5
s?°+55+6 s+2 s+3
Thus, y(t) = -3¢ +5*, t>0

or, Y(s)=




5. System Level ssdomain Analysis

A. System Consideration

So far we analyzed circuits using s-domain analysis and now it’ s time to broaden our analysis to
the systemslevel. Inthe system level analysis, mathematical Input-Output Relationship is more
important than the circuit details. This system analysiswill alow you to deal with many of the
basic concepts of control and communication systems.

B. Transfer Function

In our circuit analysis, we found load voltage (or current) of acircuit excited by sources. Inthe
system level analysis, the details of the circuit could be replaced by just a box (or “black box™).
Then, the excitation isthe INPUT to the box, and the response, the OUTPUT fromthebox. A
means to describe the “black box” using x(t) and y(t), without knowing the details inside the box
isafunction called, “Transfer Function,” which literally transfers x(t) to y(t). Inthe diagram
below, the transfer function could be afunction, g(t). Then the output y(t) is derived by the
convolution (not the scope of this course) of the input and the transfer function:

y(t) = x(t)* g(t) .

Xt ¥it)
INPUT — —— QUTPUT

In s-domain, with X(s) = L{x(t)} and Y(s) = L{ y(t)}, the diagram above changes to:

Xi) — Gly —> vig

Then, in s=domain, the output Y (s) can be derived by the simple multiplication of the input and
the transfer function: Y(s) = X(s)G(s). Thisisone beauty of the s-domain analysis. However,

s-domain and time-domain equations are actually equivalent.

Transfer Function Example
(a) Determine Transfer function of the circuit (below |eft).
(b) Using the transfer function, determine the response due to an input source v, (t) =5sin 2t .

) 2
+ & W .+ + W '+
1 _| v 4 1
AU U 1) s T~ Y
" » " “» .
SOLUTION

(a) Convert the circuit to s-domain (above right)



4/s
V,
Va(9) _ 1(S){2+4/s} 4ls 2

Transfer function: G(s) =

V,(9) V,(9)  2+4/s s+2
The time domain transfer function is the inverse transform of G(s): g(t) = 2™, t>0.
(b) Theinput of v, (t) =5sin2tin s-domainis: V,(s) = %
s°+
2 10

Therefore, output is: V. (s) =V, (S)G(S) = ——-
p »(8) =V,1(s)G(9) 2 2.4

Let’sinverse transform of the output:

2 10 A Bs+C
V2 (S) = ’ 2 = + 2

S+2 s°+4 s+2 s +4
By residue method: A=5/2
By algebraic method: C=5, and B= - 5/2
Therefore,

Vv, (s)=

2 10 _5/2+—5/25+5_§{ 1 s N 2 }
S+2 s?+4 s+2 s°+4 2|s+2 S°+4 s*+4
Finally, the inverse transform gives:

5

2

v, (t) = g[e2t —cost2t +sin Zt] = ge” +——co0s(2t +45), t>0

(c) Observation of the output
The output has two terms.The first term is an exponential decaying transient one,
and the second one is steady-state. The transient term is due to the circuit (or
“natural behavior of the circuit”) and the steady-state term isdueto the input
source.

C. Polesand Zeros

The transfer function G(s) is usually expressed by the polynomials of numerator and
denominator: G(s) = y . Then Poles are defined as the roots of D(s) and the zer os are the

)
roots of N(s). In other words, poles are the values of sthat will cause the transfer function to be
infinity (e-), while zer os cause it to be zero (0).

The variable sisacomplex variable, so it can be expressed by
S=0+|w

where, ¢ isthe damping constant, and ®, angular frequency.

From the above example of V,(s) = izl—o ,thereare3polesat s=-2,—j2,+j2.
S+2 s°+4

Thereis no zero. (or we can say there are 3 (the same number as the poles) zeros at “infinity”)

Pole L ocation
The location of Poles (marked by “x”) in complex s-plane indicate the system behavior (or


Admin
Pencil


“stability”) while that of zeros (marked by “0”) does not ordinarily affect. So let’s discuss about
the system stability with pole locations in the s-plane.

Pole L ocation F(s) f(t) System Stability
On negativereal A Ae & Stable
axis s+a
On negativereal A B A Ae ® sinwt Stable
plane [s+a+ jw][s+a—jw] (s+a)*+w
On positive red A Ae?t Unstable
axis s—a
On positive red A Ae® sinwt Unstable
plane (s—a)% + W2
At theorigin A Au(t) Marginally

s Stable
On jw-axis A Bsinwt Marginaly
2 + W2 Stable

Io - axis

4 ﬁﬁﬁ & %
¢ & & &

MARGINALLY STABLE

Stability Check Example

Show the following active amplifier circuit (in s-domain) is unstable by the poles locations.
The OP Amp behaves as V,(s) =4V, (s) +V,(9)] .

2
Mi—ap—a
* Vis) 1
v, (s) . < T 9
- » .'




SOLUTION
Since current does not flow to the Op Amp, the node voltage equation at the output terminal is:
Va(9)=V5(9) | Va(9) _

0
1 1/s
Substituting the relationship of V;(s) = 4[V,(s) +V,(s)] yields, V,(s)(s—3) = 4V,(s)
Therefore, the transfer functionis: G(s) = Val9) _ 4
V,(s) s-3

The pole location is on the positive real axis and the time domain function g(t) = 4e* is
exponentially increasing. System is unstable.

I® - axis

O- axis

E 3

D. Steady-State Transfer Function and Frequency Response

Aswe discussed before, the variable sis a complex number, with damping (transient) component
and the steady-sate component. |f we are interested only in the state-steady condition of a
sinusoidal system, we can change the variable s to be a complex number without real part.

In other words, in steady-state, s= ja . Inthe system behavior analysis, if poles are on the

imaginary axis, system is marginally stable (meaning that steady state). Therefore, the transfer
function of steady-state can be equated as: G(s) = G(jw) . By doing this, we suddenly found us

in the frequency-domain, and the frequency response world.

The steady-state transfer function is a complex number and afunction of the angular frequency,
so it can be expressed by the amplitude and the phase angle:

G(jw) = Aw)e’™ = A(w)£8(w)
A(w) : Amplitude response, and &(w) : Phase response

This analysis opens the “frequency response.” Consider atransfer function G(jw) and an input
signa X(t) =V, cos(200t + ¢) . Note that the input signal is a single-frequency sinusoid.
Then, the output is: Y(jw) =G(jw) X (jw) = AW)ZLO(W) -V, . £LP = AWV, Z[0(W) + @]
Therefore, the output amplitude responseis. Y = A(W)V

e » Nd
the output phase responseis. y = 8(w) + ¢

Or, we can express the transfer function response in terms of the input and outpuit:

A(w):vland owW) =79

max

The above expression of amplitude is called “absolute amplitude” and there is much convenient
expression of amplitude, “relative amplitude,” which is defined as:



A (W) = 20log,, Alw) ,where A(0) is the reference amplitude at a particular frequency (0 Hz)

AQ0)

Frequency Response M easurement Example
For the circuit below,

?
L o——A .
1
ﬁﬂ] T %u]
- . .-

(a) Determine the steady-sate transfer function of the circuit for any arbitrary w.

(b) Determine the steady-state response due to the input signal v, (t) = 5sin 2t by means of
phasor concept.

(c) Determine the steady-state response if the angular frequency of the input signal is changed to
w=10 rad/s.

(d) Using the amplitude response at dc (0 Hz) as areference, determine the relative dB loss (or
gain) at w=2 and w=10.

SOLUTION

The s-domain circuit:

2
L — .
4 _|
"‘"1{5] = T 'ufz[s]
- . ._
. 2 , 2
(a) From earlier example, G(s) = ——, therefore, G(jw) = ,
S+2 2+ jw
And, Aw) = 2 and 9(W)——tan‘1v—v
’ Va+w? 2
(b) Since 5sin2t =5cos(2t —90) =5£-90=-j5
Therefore, by voltage division,
: , 4/ j2 . 4/j2 —-j20 20£-90 5
V,(j2)=V,(j2) ————=(-]j5 = = =—/-135
:(12)=W(] )2+4/j2 (’)2+4/12 4+ j4  Mfos45 2

Therefore, v, (t) = 3.536cos(2t —135) [for w=2 case]

(©) AUD)=—2— =0.196, and #(10) = —tan"* 1—20 — _78.69

4+10?
Therefore, V,(j10) = G(j10)V,(j10) =[0.196£ — 78.69][5£ — 90]
NOTE: Sincevi(t) isasingle frequency signal, so V,(jw) =V,(j2) =—]5 for any w.
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Finally, v, (t) = 0.981(cost10t — 168.69)

STOP: Observation: Do you see the magnitude change between the results of (b) and ()
when the frequency changes from w=2 to w=107?

(d) At w=10, A(w) = szo =1= A0)

@w=2: relative dB gain (loss) is:

A(2) 2 1
2) = 20log,. —=2 = 20log,,| ———— | = 20log,. — = —10log,. 2 = —3.01[dB
A (2) J10 A0) glo( MJ O10 72 J1o [dB]

@w=10: relative dB gain (loss) is:

A (10) = 20l0g,, % = 20'°gl°(ﬁj

= 20l0g,, 0.196 = —14.15[dB]





