Dependent Source Problem

EECE499-Spring 2022 HW1

Solution

Problem 2:

In a given circuit below, all the resistances and sources are known. In other words, the known are: V_{cc} , V_o , R_1 , R_2 , R_E , and R_C . And the question is: **Find equation for i**_B in terms of all the known values.

Solution:

1. The fist thing we do is to mark nodes (a, b, c, and d) and flow indication of the currents (i_1 , i_2 , i_B , i_E , i_C , and i_{CC})

2. Since the current $i_{\rm B}$ is our target, it must be centered in any equation derivation.

3. At node c, we have a relationship for the current:

KCL @c: $i_B + i_C = i_E$, since $i_C = \beta i_B$ the final equation is: $i_B(1+\beta) = i_E$ (1)

- 4. Now, we have to find equation of i_E KVL @ Loop2 or KVL @d-b-c-d: $-i_2R_2 + V_o + i_ER_E = 0$ (2)
- 5. Since we have one more variable, i_2 , we need another equation which includes i_2

KVL@ Loop1 or KVL @d-b-a-d:

$$-i_1 R_1 - i_2 R_2 + V_{cc} = 0 \quad (3)$$

- 6. Wait a minute! We now realize that, to solve one equation, we introduce new variables. So far we have the following 4 unknown variables in 3 equations: i_1 , i_2 , i_B , and i_E In other words, we need one more equation. Then we may be in a good shape.
- 7. At node b, we can have an equation which relates currents i_1 and i_2 in terms of i_B KCL @b: $i_2 = i_1 - i_B$ (4)

8. Now we have 4 unknowns and 4 equations, so the only thing left is how to manipulate to eliminate some.

Let's have a substitution of (4) to (2): (4) --> (2): $-(i_1 - i_B)R_2 + V_o + i_ER_E = -i_1R_2 + i_BR_2 + V_o + i_ER_E = 0$ (2)' Also, let's have another substitution of (4): (4) -->(3): $-i_1R_1 - (i_1 - i_B)R_2 + V_{cc} = -i_1(R_1 + R_2) + i_BR_2 + V_{cc} = 0$ (3)'

9. From (3)', we could get a nice equation of i_1 in terms of i_B and other known values.

(3)'-->:
$$i_1 = \frac{V_{cc} + i_B R_2}{R_1 + R_2}$$
 (3)"

10. Now, if you plug equation (3)" to equation (2)', we have an equation with i_E and i_B only.

(3)"-->(2)':
$$-\frac{V_{cc}R_2 + i_BR_2^2}{R_1 + R_2} + i_BR_2 + V_o + i_ER_E = 0 \quad (2)"$$

11. We now see that with two variables (i_E and i_B), we have two equations (i.e., (1) and (2)"). Let's plug (1) to (2)"

(1) --> (2)":
$$-\frac{V_{cc}R_2 + i_BR_2^2}{R_1 + R_2} + i_BR_2 + V_o + (1 + \beta)i_BR_E = 0 \quad (2)$$
""

12. I will leave the final simplification of (2)" to you.

$$i_{B}[R_{2} + (1+\beta)i_{B} - \frac{R_{2}^{2}}{R_{1} + R_{2}}] + V_{o} - \frac{V_{cc}R_{2}}{R_{1} + R_{2}} = 0$$
$$i_{B}[(1+\beta)i_{B} - \frac{R_{1}R_{2} + R_{2}^{2} - R_{2}^{2}}{R_{1} + R_{2}}] + V_{o} - \frac{V_{cc}R_{2}}{R_{1} + R_{2}} = 0$$

13. Here is the final solution. Check with yours.

$$i_{B} = \frac{\frac{V_{cc}R_{2}}{R_{1} + R_{2}} - V_{o}}{(1 + \beta)R_{E} + \frac{R_{1}R_{2}}{R_{1} + R_{2}}}$$

Now we use Smath Studio to find the the value:

$$Vcc = 15 \quad V0 = 200 \cdot 10^{-3} \quad R1 = 20 \cdot 10^{-3} \quad RE = 100$$

$$RC = 500 \quad \beta = 39 \quad R2 = 80 \cdot 10^{-3} \quad RE = 100$$

$$IB = \frac{Vcc \cdot R2}{R1 + R2} - V0$$

$$IB = \frac{Vcc \cdot R2}{(1 + \beta) \cdot RE + \frac{R1 \cdot R2}{R1 + R2}} = 0.00059$$

$$IA = \frac{Vcc + IB \cdot R2}{R1 + R2} = 0.000622$$
Since $IC = \beta * IB$

$$IC = \beta \cdot IB = 0.02301$$
Then at node a by KCL : $ICC = IC + I1$

$$ICC = IC + I1 = 0.023632$$

4